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SUMMARY

This document describes a method of accurately computing, in airborne fire control computers ,
the impact range of free falling projectiles such as bombs or bullets. The document has two parts.
In Part I older computation methods and their limitations are described briefly and compared
with a new computation method , or algorithm. Part H presents a rigorous mathematica l develop-
ment of the algorithm with examples of its accuracy for several typical Navy weapons.

The new algorithm can contribute significantly to the flexibility and effectiveness of Navy strike
aircraft. This method of calculation is applied through software , and it can be used in new
systems or reprogrammed into existing systems without increasing hardware cost.
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ABBREVIATIONS AND SYMBOLS

a Aircraft acceleration

A Geometric altitude above sea level

A max Upper limit of geometric altitude in each atmospheric region

~~~~ Lower limit of geometri c altitude in each atmospheric region

AC Coefficients of Chebyshev polynomials

AT Rocket acceleration due to thrust

Coefficient of drag of projectile

CN Coefficients in polynomial expansion of atmospheric model

D Diameter of projectile

DC Coefficients of Legendre polynomials

Coefficients used in the Legendre expansion

F General function

F.1 Thrust of rocket engine

g Acceleration due to gravity

g0 Local value of gravity at sea level

h General integration interval

I-I Dra g function

HA Aerodynamic drag function

Hg Geopotential altitude

H R Rocket thrust function

Number of integration steps taken so far

Coefficient of drag of projectile

LC Coefficients used in the Legendre expansion

In Polynomial index

M Mass of projectile

Ni g Mass of rocket

M y Number of steps to be taken with altitude (Y) as the independent variable

n Polynomial index

N Exponent in power series approximation of the atmospheric model

N x Number of integration steps to be taken with downrange (X) as the independent variable

r Tur n radius

The ~th Legendre polynomials
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ABBREVIATION S AND SYMBOLS (CONTD)

R E Local effective value of Earth ’s radius

S Symbol used to represent the expression 2/(A max - Amin )

Time — measured from release

t D Time of drogue deployment on retarded weapons

Ti me of release

t R Time variable used with rocket mass and rocket thrust functions

U1 The ~th Chebyschev polynomial

V Velocity

V0 Velocity at release

V X Downrange component of velocity

VXD Downrange component of velocity at drogue deployment

V~~0 Downrange component of velocity at release

V y Vertical component of velocity

VYD Vertical component of velocity at drogue deployment

Vy0 Vertical component of velocity at release

x General independent variable

X Downrange positio n

X D Downrange position at time of drogue deployment

X0 Downrange position at release

X R Impact range of projectile

Y Altitude above sea level

Y D Altitude at drogue deployment

Altitude at release

Ad Distance traveled in one calculation interval (At)

Dive angle deviation in one calculation interval (At )

At Time interval between successive impact range calculations

AV Velocity deviation in one calculation interval (At )

Altitude deviation in one calculation interval (At )

e Dive Angle

Dot above symbol denotes derivative with respect to time : n dots denotes n-t h derivative
p Air density (mass)

pw Air density (weight)

x
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DEFINIT IONS

• Algorithm A precisely defined, step-by-step method of computing some quantity.

Ballistic Wind A constant, nonlayer ed w ind which is equivalen t to the actual wind in the respect
that it affects the impact point by the same amount.

CBU Clustered Bomb Unit—a canister-type bomb which dispenses smaller bombs at some
point in its trajectory.

CEP Circular Error Probable—the radius of a circle, centered about the expected impact
point, into which a projectile will fall with a 50% probability.

Crossrange The horizontal distance measured in a direction 90 degrees clockwise from the
downrange direction.

• Dispense r Synonymous to CBU.
• Weapon

Downrange The horizontal distance measured in a direction away from the point of projectile
release and in the vertical plane which includes the release velocity.

Uroguc A par achute . va nes , or other device deployed at the rear of a bomb to increase its
il ra~ and slow it down.

E~j ection Frequentl y bombs are physically ejected from an aircraft to ensure clean separation.
The veiocit~ imparted to a bullet can be considered an ejection velocity .

Impact Range Ih e hortio nta l  distance between the release and impact of a projectile.

RSS Root Sum Square—the square root of the sum of the squares; a method used to add
• probabilist ic ct~ ,~cts of independent error sources.

• Runge- Kutta The name of a class of formulas used to evaluate integrals. They are widely used in
calculating solutions of differential equations for which analytical solutions cannot
be found.

Trajectory The path of a projectile.

Word The quanti ty of a computer memory normally require d to store a single number or
instruction.
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1.0 INTRODUCTION

LI The Weapon Delivery Problem

~1ost aircraft weapons can be describe d as ballistic projectiles. That is, the only forces acting on
them in flight are gr avity and aerodynamic drag. Bullets , streamlined bombs, drogued bombs ,
clustered munitions , and unguided rockets (after burnout ) are all ballistic projectiles. Guided
weapons and weapons developing lift are not ballistic projectiles.

For successfu l weapon delivery, the pilot of an airplane must maneuver his plane into a position from
which the weapon will fall to the target. The problem is made difficult in two ways. First , the
release mu st be done accura tely becau se the impact range is very sensitive to release errors. Figure I
shows how the distance a bomb travels changes as bomb release conditions change. i-leading, dive
angle , speed , altitude , and range from the target must all be exactly right when the weapon is
released. The second difficulty is selecting a correct combination of all these factors. The path of a
ballistic projectile is curved ;and the precise curvature depends on the atmospheric density , the size
and shape of the projectile , and the speed and dive angle at release.

Several pilot aids and deliver y tactics have been developed to ease weapon delivery problems. Bomb-
sights, release timers, and computers are SO~~ C of the devices: dive bombing is a delivery tactic which
minimizes the effect of errors at weapon release .

M l ll S T R E A M L I N E D  BOMB

2 ,000

lO° dive

0 

~~~~~ft s>~~~~

0 1,000 2 ,000 3, 000 4 , 000

BOMB GROUND RANGE (FEET~

Figure 1. Bomb Trajectories
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The obvious solution to this problem is to have the fire control system calculate the correct range
to release the weapons for any speed, altitude , and dive angle. Because this calculation is so difficult ,
no operational fire control system can accurately compute range for all the weapons and delivery
conditions used. The inability to perform this calculation accurately is a significant source of
weapon delivery error for all current aircraft . Equally important , delivery tactics become constrained
to those for which the fire control system can do a fairly good job.

The subject of this document is a new computing method, or algorithm, for the calculation of
weapon range. This method can be used for any ballistic projectile , and it produces accurate
answers for any release condition operationally possible. This algorithm can be used in current or
futu re fire control systems having a digital computer.

.2 History of Calculation Methods
The path of a ballistic projectile can be described by a relatively simple-appearing set of differential
equations. If drag is left out , numerous complications can be added to the basic equations of
motion (e.g., the rotation of the earth), and a mathematica l solution can still be found. This is not
true once drag has been included , because an accurate description of the drag is mathematically
difficult. Drag is a function of the projectile’s size , speed , and drag coefficient , as well as air density.
Air density varies primarily with altitude and secondarily with conditions such as the weather ,
latitude and time of year. The dra g coefficient varies with Mach number , which in turn varies with
speed and air temperature , whic h varies with altitude and so on , just as atmospheric density does.
These factors are empirically determined and are nonlinear. At any given speed or altitude the drag
acting on a projectile can he calculated , but an accurate function describing the drag cannot be put
in the differential equations to solve for the time of fall or point of impact.

A way around the lack of a solution has been known for a long time. All the bombing tables and
other ballistic tables are calcul ated by a process known as “numerica l integration.” In this process,
the total path is divided into many pieces , and each piece is worked with an approximation that
all forces remain constant fn~ short time periods. A mathematical formula with constant forces
permits easy calculation of the position amid velocity of the projectile at the end of 0.1 second, for
example. The forces on the projectile are calculated for the new point and used for the next 0.1
second. Figure 2 illustrates how this process can be made as accurate as desired by taking smaller
and smaller steps.

A typical ballistic table trajectory calculation may divide the fall of a bomb into a thousand segments.
This yields very accurate answers, and each answer takes only a few seconds on an IBM 7094 com-
puter. However , this is too long and the 7094 computer is too large for aircraft fire control systems.
Therefore , numerous other methods have been used in the aircraft to provide weapon range informa-
tion to the pilot.

The first advance in fire control computation was the manually adjustable sight (“depressed reticle”).
Before flight , a pilot selects the speed , altitude , and dive angle he wants to use to attack a target.
He goes to a ballistic table which gives the angle by which the weapon will deviate from straight line
travel when it reaches the ground, if released at those conditions. The pilot sets his sight to this
angle. Now if he can maneuver the ai rcraft to the selected speed , altitude , and dive angle at the
instant the target is in the sight, he will get a hit. A deviation in any one of them, however, will
result in a large miss. Accurate weapon delivery can be done with such a system , but it requires
excellent pilot control. This degree of control can be attained only by using intensively practiced

4
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delivery maneuvers. Always using the same maneuver in combat is dangerous; moreover , the finesse
achieved by a test pilot on a practice range is not readily duplicated by a green pilot under combat
conditions. As a result, aircraft with relatively simple fire control systems may demonstrate delivery
errors under 100 feet on a test range, bu t produce average errors over I .000 feet in combat.

The most modern systems (e.g., F-I 11 , A-bA) provide “universal” mode weapon delivery, using a
digital compu ter in the fire control system continuously compute weapon range for current condi-
tions (speed, al titude , dive angle, wind). Now displays can be driven to aid the pilot in steering
the aircraft to a release point. In one example , a heads-up disp lay shows wh ere the im pact poin t of
a weapon would be if released right now , and how tha t point w ill move if th e speed , heading, etc.,
are maintained. Since the pilot can also see the target through the display, he has the information
needed to maneuver the airplane smoothly to a release point, and he maintains considerable latitude
in just how to do it. This degree of flexibility and naturalness contributes to a very significant
improvement in the operational usability of the aircraft and the accuracy of delivery.

The modern “universal” systems are not sufficiently accurate , however , and their universality has
some severe limits. The inaccuracy is due to the previously discussed diffi culty of calculating a
ballistic trajectory. Approximations hav e been made to keep the calcula tion simple and fast enough
for the airborne computer. Usually a simplified form is assumed for the drag function which permits
the differential equations of motion to be solved analytically. This solution is evaluated by the
airborne computer. For a given type weapon , this simplified approximation can work well over a
limited range of release conditions. Outside these conditions, the errors in the approximation
gradually introduce larger and larger errors. For a different weapon or delivery regime , another
approximation and set of equations are needed. As a result , the organization inside the (‘ire control
computer begins to look like older systems with mart y “canned” delivery modes. Since limited
computer stora ge is available for different modes, the approximations are patched up to work within
certain limits (say a 100-foot error) over a fairly wide range. Thus the approximation to truly
universal operation is achieved at some loss in accuracy even at those conditions for which the
system is optimized.

In 1967, algorithms submi tted in proposals by leading fire control vendors were evaluated at The
Boeing Company. The best of these was embodied in a computer program and tested over a wide
range of conditions , for both streamlin ed and drogued bombs. Sampl e result s arc shown in Tables 1
and H. No existing fire control system would include exactly these equation errors, hut they arc
typical of the 1967 state-of-the-art. Note that these errors conic from the equations alone, with no
allowance for round-off errors , sensor errors or steering errors, It is clear that re finement could
reduce the systematic errors , but not enough to make them insignificant.

L • — •---.•-- • —— -— ———---- .-‘-.- - -
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Table I Typ ica l Equation Errors — Mill Bomb

FL IGHTPA TH AN GLE AT RELEASE

45°DIVE LEVEL 45°TO SS

ALTITUDE TRUE EQUATION TRUE EQU ATION TRUE EQUATION
(FT) RANGE (IT) ERRO R (FT) RANGE (VT) ERROR (FT’ RANGE (VT) ERROR (VT)

2,000 1,885 —15 10,864 —330 28,559 —718

5 000 4 ,367 —37 16,853 —399 31,03 1 —905

10,000 7 ,832 —64 23,333 —5 28 34 ,626 —1 ,226

15.000 10,683 —71 28,035 —621 37 ,739 —1 ,524

R EFERENCE: NAVAL W EAP ONS LABORATORY BALLISTIC TABL E NUMBER 101,
CONDI T IONS : TARG ET AT SEA L EV EL

NO WIN DS
NO EJ ECTION VEL O CITY
600 KNOTS R ELEAS E SP EED

+MEANS CALCULATED RANGE IS TOO LONG
— MEAN S CALCULATED RANGE IS TOO SHORT

Table II Typical Equation Errors — Mk 825 Bomb

RELEASE SPEED

200 KNOTS 400 KNOTS 600 KNOTS

ALTITUDE TRUE EQUATION TRUE EQUATION TRUE EQUATION
(FT) RAN GE (FT) ERROR (VT ) RANGE (FT) ERROR (FT) RANGE (Fl) ERROR (VT)

500 1,507 —7 2,483 +78 3,111 +185

1,000 1,919 —11 3,010 +99 3,677 +329

2,000 2,360 —26 3,554 +101 4 ,255 +345.

5,000 2,901 —91 4,244 +23 5,007 +267

REFERENCE: NWL BALLISTIC TABLE 010
CONDITIONS: LEVEL RELEASE

TARGET AT SEA LEVEL
NO EJECTION VE LOCITY
NO WIND

7
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2.0 NEW CALCULATION METHOD

2.1 Development

Research provided the clue which led to a calculation ureakthrough. Work with mathematical series
expansions showed better results if the equations were converted into a series with range , instead of
time , as the independent variable. Applied to the numerical integration technique , this meant that
instead of dividing the t rajectory into segnients (e.g., of 0.01-second duration) the trajectory would
be divided into segments (e.g., covering 10 feet of downrange travel) . The first experiments showed
good accuracy (errors of a few feet or less) could be obtained with 10 or fewer integration steps,
giving about a 100 to 1 improvement over the number of steps used to calculate the precise ballistic
tables. Two years work produced refinements to extend the range of weapons and delivery conditions
which could be handled by the sanie basic method. Later, other refinements increased the speed of
computation. This development process is continuing, but the new algorithm is better in its current
state than any computation method now used in an aircraft fire contro l computer.

2.2 Description

The new algorithm is accurate and flexible because most of the calculation is performed in the sanie
manner that ballistic tables are calculated. A t first , exactly th e same equa tions were used to calculate
atmospheric density, speed of sound , gravity acceleration , and drag coefficient. Later work has
developed new equations which y ield the same answers, but can be coniputed faster. At no point in
the basic equations (the models of the physical world) has any approximation been used that is dif-
ferent from those accepted and used in the calculation of ballistic tables.

Figure 3 illustrates how the numerical integration process of the algorithm works and the essential
differences between it and the process used in ballistic table calculation. Figure 3, Point A, shows a
defined release point (speed , altitude , and dive angle). We know everything necessary about the
release point. The inipact range is to he calculated.

The range of the impact point niust be estimated first so the size of the calculation intervals can be
chosen. The range the bomb would go in a vacuum is the estimate used. This estimate only depends
on the release conditions and is calculated easily with a single equation. (See Figure 3, Point B.)

Figure 3, Point C, shows the range estimate divided into five equal integration steps (an arbitrary
number of steps based on experimental results). This division limits the amount of calculation
required. If total calculation time is to remain small and fixed (a requirement for airborne use), the
number of integration steps must remain small and fixed.

Integration is shown in Figure 3, Point D. Starting at the release point , the position , velocity, etc.,
of the projectile is calculated as it reaches the range corresponding to the end of the first step.
(See “I ,“ Point D.) No trajectory calculations are done at any point between the ends of the steps.
To calculate “I,” begin with the release point and calculate the average value of the forces acting
on the projectile between release and “L” The simplest estimate would be that the forces arc the
same throughout the interval as at release . This estimate is good only if the interval is very short
or if the forces change slowly. A better estimate is needed to use long, but few , steps. This is
obtained through the Runge-Kutta technique of numerical integration. The one used in the algorithm
is the “standard , fourth-order , Runge-Kutta technique.

”9
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THE PROBLE M ~~ ESTIMATE RANGE

RANGE RANGE

INTEGRATION STEPS FORWARD INTEGRATION

R)~~~~~~~~~~RANGE 5
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Figure 3. Numerical Integration r
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The average values of the forces in the interval , expressed as functions of range , are multiplied by the
length of the step to find a close approximation of “L” The same practice is repeated to go from “1”
to “2” and so on until “5” is reached.

At “5” the computer notices that the calculated position is under ground. it is not known where
between “4” and “5” the projectile struck the ground. Recall that the original differential equations
of motion were functions of time. These equations were rewritten to be functions of range. Now a
new set is used , with the same equations rewritten to be functions of altitude. In altitude , it is easy
to decide the required step length. The step length is just the difference between the altitude of “5”
and the target altitude. (See Figure 3, Point E.) One more integration step, using the same integra-
tion technique with slightly different equations, carries the calculation to precisely the target altitude.
This method of locating the impact point is an improvement over the way it is done in ballistic table
calculations. It is obviously wastefu l , though , to calculate forward to “5” and back to the impact
or return to “4” and take a step down in altitude to the impact point. A set of logical tests was
developed to detect the last point above ground and initiate the change to the altitude coordinate.
(See Figure 3, Point F.) These tests also detect cases (as in drogued weapons) where the trajectory
has become so steep that it is more accurate to take the remaining steps in altitude than in range.

The basic integration method applies to any ballistic projectile , but some adaptation is require d for
each type weapon. The adaptations included in the algorithm are described briefly below:

2.2.1 Streamlined Bombs

The process described fits streamlined bonibs exactly. It is only necessary to provide the bomb size
and a table describing how the drag coefficient of the particular bomb varies with Mach number.

2.2.2 Bullets

After being fired , a bullet is really just a small, streamlined bomb and is handled as such. The
muzzle velocity of a particular gun-bullet combination is added to the aircra ft velocity at release,
as velocity imparted to a bomb by an ejector would be added. The weight and drag coefficient
table must be provided as well as muzzle velocity, just as for a bomb.

2.2 .3 Drogued Bombs

These bombs are more difficult to model accurately. Their common characteristic is that they are
released in a relatively low drag configuration. At some time after release they deploy vanes or a
parachute which greatly increases total drag. There is no basic difficulty in calculating bomb
t rajectory before the drogue is deployed. Nor is there a basic difficulty in calcu lating the trajectory
after the drogue is deployed. The problem is to break the calculation correctly into two part s, one
using each drag function.

This has been worked out very satisfactorily in the algorithm for the Mk 82S bomb. The time
until  the drogue opens is about haif a second. The procedure used is: ( 1) Calculate the time of
drogue deployment using the exact equations; (2) Use a simple approximation (Tayloi ’s series
expansion) to find bomb positkin and velocity at the time the drogue opens: and (3) Use the
basic algorithm with the correct drag to integrate the drogued trajectory down to the point of
impact.

I I
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Computation for other drogued bomb types , such as the Mk 43, will require adding appropriate
logic for the particular drogue deployment mechanism.

2.2.4 Bluff Bombs
These are new bombs, such as the BLU-58 , which may or may not be drogued. Bluff bombs are
treated satisfactorily as streamlined or drogued bombs, depending on whether they are drogued.

2.2 .5 Cluster Bombs

These weapons are released as fairly large, low-d rag.containers. At a predetermined point in their
fall , they us~ ome mechanism to dispense smaller weapons. These smaller weapons are higher drag
than the container and may also develop lift . The fire control computer should predict the impact
location of the center of the pattern rather than individual positions of the small bombs. The method
of applying the algorithm is to calculate the t rajectory of the container to the point where it dis-
penses the small weapons ; switch to a drag function which describes the motion of the pattern
center; and integrate down to the ground. Once again, the impor tan t fac tor is providin g the logic
to switch the drag function at the right place.

2.2 .6 Rockets
Work is underway to extend the algorithm to include unguided rockets and tracer bullets. Rockets
present several new problems. They change weight during flight: they have thrust (at varying levels)
as well as drag; and they slew around just after firing because their launchers are not lined up with
the aircra ft direction of flight. It is felt that adequate provisions can be made for these problems in
the algorithm.

2.3 Results

A characteristic of numerical integration techniques is that they can be made as accurate as desired
by taking more integration steps. However, taking m ore steps requires a more expensive fire control
computer. A standard suggested by R. Seeley of Naval Weapons Center, China Lake, has been
adopted: The calculation error is insignificant if it is less than 10 feet or 1 milliradian of angle
(0.06 degree) as measured from the release point. The arbitrarily chosen standard of five integration
steps in range (plus one in altitude ) provides answers which are almost always within this standard ,
even for release conditions far outside the usual precision delivery envelopes.

Before presenting the results obtained for some typical weapons, one characteristic of the tables
must be explained. The differences between the calculated range and the reference range have been
rounded to the nearest foot as done in the reference ballistic tables. These two rounding processes
(in the ballistic tables and in the error calculation) introduce an uncertainty of about one foot into
the errors given. In the case of small errors , this gives an erratic appearance to the numbers. The
errors, measured in feet , are given as positive if the calculated range is longer than the reference
and as negative if the calculation falls short. When the errors are converted to an angle for compari-
son with sighting errors, the absolute value is taken. The angles are rounded to the nearest tenth
of a milliradian for the same reason that the linear errors are rounded to the nearest foot. Finally,
the percentage error of the calculated time of fall is given. This can he important in operation ,
e.g. , for wind correction.
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Table Ill  compares the new algorithm to that  discussed earlier , using the M i  17 streamlined bomb.
Table IV compares the two algorithms for the Mk 82S drogued bomb. Table V is for a bomb for
which the calculated ballistic tables cover a wide range. The algorithm continues to give respectable
results up to the table limits. Mach 2 at 70,000 feet is well outside the operational envelope of any
system trying to precisely deliver conventional , unguided weapons. The generality of the method
which achieves these results, however , provides the capability to handle the new weapons or new
tac tics not plan ned for when a system is built , but which become operational requirements.

Table VI shows the accuracy achieved with a typical gun and round combination. Actually, a
single integration step gives fairly good answers.

These examples cover the range of general weapon types to which the algorithm has been applied.
There should be no difficulty in obtaining similar results for other specific weapons of these
general types.

Table III Algorithm Error Comparison — M117 Bomb

RELEASE A N G L E

ALTITUDE ________ 

450 DIVE LEVEL 45°TOSS
(VT) AND RANGE ANGULAR TIME RANGE ANGULAR TIME RANGE ANGULAR TIME

ALGO RITHM ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERRO R
__________ 

(VT) (MR1 (°o) (FT) (MR) (°o) (FT) _(MR) (%)

2,000 OL D —15 4.0 0.4 —330 5.6 2.3 —718 1.8 0.9

2.000 NEW + 1 0.3 0.0 0 0.0 0.0 —27 0.1 0.1

5,000 OLD —37 4.2 0.2 —399 6.6 1.3 —905 4.7 1.3

5.000 NEW 0 0.0 0.0 — l 0.0 0.0 —38 0.2 0.1
10,000 OLD —64 4.0 0.1 —528 8.4 0.8 —1 ,226 9.8 1.2

10,000 NEW +3 0.2 0.1 0 0.0 0.0 —63 0.5 0.1

15.000 OLD —71 3.1 0.3 —621 9.4 0.7 —1 ,524 14.4 1.2

15,000 NEW +2 0.1 0.0 +2 0.0 0.0 —85 0.8 0.1

REFERENCE: NAVAL W EA PONS LABORATORY BALLISTIC TABLE NUMBER 101. JULY 1967
CONDITIONS: 600 KNOT RELEASE SPEED

TARGET AT SEA LEVEL
NO WIND
NO EJECTION VELOCITY

13
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Table IV Algorithm Error Comparison — Mlc 82 Snake ye Bomb

RELEASE SPEED (KNOTS)
RELEASE

ALTITUDE 
_________ 

200 400 600
(FT) AND RANG E ANGULAR TIME RANGE ANGULAR TIME RANGE ANGULAR TIME
~LGORITHM ERROR ERRO R ERRO R ERRO R ERRO R ERROR ERROR ERROR ERROR
________ 

(FT) (MR) (%) (VT] (MR) (°~) (FT) (MR) 
________

500 OLD —7 1.4 0.6 +78 5.9 1.5 +185 3.7 1.4

500 NEW +1 0.2 0.0 0 0.0 0.0 0 0.0 0.0

1.000 OLD —11 2.3 0.3 +99 9.5 0.9 +329 20.9 0.8 
—

1.000 NEW 0 0.0 0.1 +1 0.1 0.0 0 0.0 0.0

2,000 OLD —26 5.5 0.0 +101 11.9 0.7 +345 29.3 0.7

2.000 NEW 0 0.0 0.0 0 0.0 0.0 —l 0.0 0.1

5.000 OLD —91 13.7 0.3 +23 2.7 1.0 +267 26.0 1.5

5.000 NEW +1 0.2 0.0 —2 
- 

0.2 0.1 — 1 0.1 0.0 
—

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 010, OCTOBER 1964
CONDITIONS: LEVEL RELEASE

TARGET AT SEA LEVEL
NO W IND
NO EJECTION V ELOCITY

Table V Al gorithm Accuracy — Mk 76 Bomb

RELEASE SPEED (KNOTS)

RELEASE 400 600 1,200
ALT~TLJDE 

RANGE ANGULAR TIM E RANG E ANGULAR TIME RANGE ANGULAR TIME
ERRO R ERRO R ERROR ERROR ERROR ERRO R ERROR ERROR ERRO R

________ 

(FT) (MR) (%) (VT) (MR) (%) (VT) (MR) (%)

1,000 0 0.0 0.0 — l 0.0 0.0 —2 0.0 
— 

0.0

5,000 —2 0.1 0.1 — 11 
— 

0.2 0.1 —40 0.5 0.1

10,000 -3 0.1 0.0 -22 0.5 0.0 -152 ‘.2 0.1

20,000 —19 0.5 0.0 —42 0.8 0.0 —91 1.2 0.1

30,000 —21 0.4 0.0 —48 0.8 0.0 —27 0.3 0.0

40,000 —22 0.4 0.1 —15 0.2 0.2 —39 0.4 0.3

50,000 —25 0.4 0.2 —182 2.2 3.1 —73 0.6 0.1 —

60,000 +24 0.3 0.1 —38 0.4 0.2 —36 0.3 1.1

70 ,000 + 7 0.1 0.1 —79 0.7 4.6 —21 0.1 1.8

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 086, OCTOBER 1966
CONDITIONS: LEVEL RELEAS E

NO V,IND
TARGET AT SEA LEVEL
NO EJECTION VELOCITY
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Table VI Algorithm Accuracy — M6 1 Gun with M56 Round

RELEASE ANGLE

RELEASE 10°DIVE 15° DIVE 20°DIV E
ALTITUDE RANGE ANGULAR TIME RANGE ANGULAR TIME RANGE ANGULAR TIME

ERRO R ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR
________ 

(VT ) (MR) (%) (VT) (MR) (%) (VT) (MR) (%)

500 0 0.0 0.0 
______ _____

NOR I?
750 — 1 0.0 0.0 VALUES

1,000 —3 0.1 0.4* 0 0.0 0.7* 0 0.0 1.0*

1.500 NO REFEREN CE 
VALUE _ _ _  

~~~* 
_ _ __ _ _  _ _ _

1.750 1 _________ _________ 

- 1 0.1 Q~4*

~TIME ERRO R OF 0.01 SECOND
REFERENCE: ARMAMENT MEM CRANOUM REPORT 64— 5, FEBRUARY 1964
CONDITIONS: 400 KNOTS RELEASE SPEED

NO WIND
TARGET AT SEA LEVEL

IS
(16 Blank ) 
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3.0 OPERATIONAL SIGNIFICANCE

3.1 Attack Aircraft Application

The primary goal of the algorithm development is to apply it to aircra ft intended to deliver unguided ,
nonnuclear weapons. The best estimates show that it will fit easily into the new fire control corn-
puters, such as tha t in the A-7E , in place of the calculation methods now used. More development is
required to move the algorithm from the status of a research tool to an operational tool. When this is
achieved , however , it will be possible to retrofit the algorithm into existing aircra ft just by changing the
computer program.

Preparation of this document is an early step in a contract with Naval Weapons Center , China Lake.
The primary objective of the contract is to do the mathematical development work necessary to
bring the algorithm to a point where it could be programmed for the A-7E fire control computer.

3.2 Contribution to System Performance

There is some confusion and controversy over the accuracy of a fire control system. A given aircraft ,
on a test range with the pilot ’s option of del ivery conditions, might be able to deliver streamlined
bombs with a 100-foot circular error probable (CEP). The same airplane may record an average
target miss of 1,000 feet in North Vietnam. The amount by which the algorithm can improve the
basic mechanical ability of the system can be estimated. Wha t this improvement will amount to in a
combat situation is difficult to establish.

An error in the fire control equations will result in a fixed-bias error. Over a reasonable range of
conditions, however , this bias error will vary and may be treated—without gross injustice—as a random
error. Figure 4 illustrates the contribution to total system error which would be made by a random
equation error of 50 feet or 100 feet. There are two basic bars: one labeled 1968 technology;
another labeled 1975 technology. These represent calculated weapon delivery errors which include
all the estimated sensor errors and pilot errors (sighting, steering) for first quality systems of the
indicated time periods. The conditions chosen for evaluation are shallow-dive deliveries of stream-
lined bombs with release about 8,000 feet from the target.

Extensions above these bars show how errors are increased if the fire control equations introduce
random errors averaging 50 feet or 100 feet in size. The 100-foot figure is probably the better esti-
mate of current calculation error. Random errors add according to the square root of the sum of
the squares. Also, the errors introduced by computation are not the largest part of the total. The
effect on system effectiveness is more apparent if one considers that the chance of killing a point
target is generally proportional to one over the square of the CEP.

The change in system accuracy produced by switching to an algorithm which produces very small
errors is significant. This improvement comes almost free compared to the cost of adding newly
developed avionics. It is believed that the change in computation method will result in a system
which also is less susceptible to combat degradation. The improved flexibility will permit the use
of more varied tactics, which will contribute to improved aircraft survival. A better chance of
survival should improve pilot performance— if only through practice. Also, the improved compu-
tation and display techniques using it can lighten the pilot ’s workloa d during the critical weapon
delivery run.

17 
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CALCULATED TEST RANGE ACCURACY WITH DELIVERY TACTICS TYPICAL OF S.E. ASIA
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Figure 4. Contribution of Computation Errors to System Errors
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PART H

TECHNICAL DESCRIPTION
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1.0 INTRODUcTION

Part II presents the mathematica l aspects of finding the impact range of a projectile. Major topics
covered in this part are: (1) the basic mathematical model, (2) different coordinate systems,
(3) integration process, (4) adaptations to various weapons, and (5) sample results. Coverage of
these topics leads to an algorithm for calculating weapon impact ranges.

The basic technique used in the algorithm is to transform the differential equations so that down-
range is the independent variable. Then the fourth-order , Runge-Kutta integration formulas are
used to integrate these differential equations to obtain the impact range . Two variations of the
basic technique are presented for special cases: ( 1) when the weapon trajectory becomes very
steep, it is desirable to switch the integration process to a set of differential equations with altitude
as the independent variable; (2) when dealing with time-fuzed dispenser weapons it is convenient
to integrate the differential equations with time as the independent variable over the segment of
trajectory between release and fuzing.

Application of the algorithm presented in this document depends on the availability of a current ,
advanced , airborne , digital computer. Also , it depends somewhat on the fact that the weapon impact
range will be calculated repetitively. This process provides a good estimate of the integration interval
size and , consequently, saves calculation time.

21
(22 Blank)
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2.0 MATHEMATICAL MODELS AND THEIR INTEGRATION

The differentia l equations describing the motion of a projectile are discussed in this Section. These
equations are given first with time as the independent variable. Then they are transformed twice ;
once to make the downrange , X , the independent variable and again to make the altitude , Y , the
independent variable. Also discussed are the basic method used for integration and the comparative
et’ficicncies resulting from the use of the different coordinate systems. In this section, the discussion
is limited to streamlined bombs. Adaptations to other weapons are given in Section 3.0.

2. I Basic Diffe rentia l Equations
• The development of an effective weapons release system is inherently dependent upon obtaining

solutions of the equations for the motion of a projectile within the atmosphere. This is generally
a difficult rnathem .~tical problem which has not been solved completely. The major difficulty stems
from the non linearities introduced by the atmospheric effects on a falling weapon.

In choosing the mathematical model , two considerations have been kept in mind. The major objec-
tive of the mathematica l analysis is to yield the weapon impact point. The main effect of this is
that the weapon mass can be assumed to be a point mass. Also, the choice of the model is dictated
by the need to evaluate results against some standard. Since the armed forces publish range tables
for various weapons, the model is chosen to conform as closely as possible to the model used for
these tables.

The equations of niotion are developed assuming the projectile is a point mass acted on only by the
force of gravity and the retardation forces due to air resistance. The trajectory can be restricted to
a plane by ignoring crosstrack effects such as winds. For practical applications , the effect of winds
can be accounted for in a straightforward manner.

The assumptions adopted are summarized below:

a. The Earth is flat and nonrotating.
b. The gravitational attraction is a function of altitude.
c. The projectile is a point mass.
d. The projectile is not powered and has a constant mass.

Under these assumptions, the differential equations of motion have the following form. (See
Reference 1 for a complete discussion.)

dt~- dt

(2- I )

23
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where X , Y , and t denote downrange , attitude , and time , respectively. The coefficient H ,
which is the drag function , is given by

H=~~~D
2KD V , (2-2)

where P is the atmospheric mass density, M is the bomb mass, D is the bomb diameter, KD is
the weapon coefficient of drag, and V is the velocity. The atmospheric density P is given as a
function of altitude which is fitted to measured values of atmospheric density. K D , which is equal
to .~-CD .  is empirically derived and given in tabular form as a function of mach number. The
gravitational acceleration of a point mass above the surface of the Earth is given by

I

R Eg( Y ) g 0 — (2- 3)
(R E + Y)-

where g0 is the local value of gravity at sea level and R E is the local value of the Earth ’s effective
radius.

The above differential equations are not analytically integrable if an accurate model of H is used,
because an accurate model would render them extremely nonlinear.

The two second-order , differential  equations given in (2- 1) will now be rewritten as four first-order .
differential equations. This is done to get the differential equations in a form which is more
suitable to the integration process used. Two new variables V~ and V y are defined by

dX-~ii-
_ v x

( 2-4)
dY _ L.
dl 

- V\~

Substituting the above expressions in equations (2 - I )  results in

dV x

(2-5)

dV~ 
I .

~j - It  Vy ’~g(Y) 
- .

The four first-order , differential equations (2-4) and ( 2-5 ) are the desired equations with time as the
independent variable.

24 
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2.2 Transformation of Basic Equations
For reasons which will become clear later in the document , it is desirable to transform the differential
equations of motion into two other forms. One form uses downra nge X as the independent variable
(X-based), and the other form uses altitude Y as the independent variable (Y-based) .

The terms X-based, Y-based, and time-based are adopted to ease the terminology in the text.

The transformation to make X the independent variable will be performed first. Multiplying the
dtequations in (_ -5) by -~~~~~ or

dt(Note: — —dX V~

d V x 
= -H (2-6)

dV y -H Vy -g(Y)
dX 

= V x 
(2-7)

Similarly, the equations in ( 2-4) can be transformed to

(18)dX V~ 
--

and

~!fl_ J....
dX Vx

Equations (2-6) through ( 2-9) now represent a complete formulation of the ballistics equations in
terms of the variables V~~, V~~. Y and I , with X as the independent variable. Note that the
equations in (2-6), (2-7), and (2-8) are uncoupled from ( 2-9), the equation involving time. Therefore ,
the first three equations (2-6), (2-7), and (2-8) can be solved simultaneously without solving for the
variable t by equation (2-9). Figure 5 shows the salient features in the X-Y plane. 

_ _  j
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1.

RELEASE POINT

IMPACT

TARG ET HEIGH T

M EAN SEA LEVEL

Figure 5. Salient Features in X-Y Plan.

One can form a set of differential equations with Y as the independent variable in a similar fashion.
dt 1Mult ip lymg the equations in (~..- 5) by ~~ or

dt 1(Note: — — ) results in
y

dV x Vx
____ = -H ,,--— (2-10)
U I

= ~H _ .~iX1. (2- I l )dY V~

Also, from (2-4 )

dX
= (2- 12)

and

= vi— (2-13)
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Equations (2-10) through (2- 13) represent a complete formulation of the ballistics equations in terms
of the variables V X ,  Vy ,  X and t , with Y as the independent variable. Note , as before , the
equation involving time (2- 13), is uncoupled from the other three equations.

Also note that the equations with X as the independe n t variable , (2-6) through (2-9), become
indeterminate when Vx is zero (e.g., when the projectile is coming straight down), because
appears in the denominator. Similarly, the equations with Y as the independent variable , (2- 10)

• through (2-13 ) , become indetern i inate when V y is zero (e.g., at level release). Consequently, the
two sets of equations must he used accordingly.

The basic set of differential equations in the integration procedure developed here is X-based. This
choice was base d on experimental evidence which showed that this set of equations gave the most
favorable results. A sample of this experimental  evidence is given in Section 2.4 . The other two sets
of equations are used in special cases. When time fuzing is involved , it is conven ien t to use the time-
based eq uations for the part of the t rajectory between release and fusing. Y-hased equations work

• best when the t rajectory is very steep: i.e.. the projectile is coming almost straight down.

• 2.3 Integration Procedure
As pointed out earlier , the diffe rential equations describing a projectile ’s trajectory are not analyticall y
integrable if an accurate model of funct ion II  is used. Consequently, a numerica l integration pro-

• cedure must he used. The approach taken in the generation of ballistic tables is to inte~’rate the
differentia l equations numerically,  using t ime as the independent  variable. Many steps are taken to
insure the desired accuracy. (A typical  step length is 0.01 second.) This method is accurate and
flex ible, hut requires too much computer t ime to be suitable for v~eapon delivery application.

The procedure which proved to be most successful in eliminating this shortcoming is to use the
fourth-order , Runge-Kutta integration formulas with the X-hased , differentia l equations to
integrate the trajectory to the vicinity of the impact point. Integration of the Y-base d equations
is then used to locate the impact point precisely, since its V-coordinate is known. An estimate
of the required computer time and memory for using this procedure to calculate a weapon impact
point is given in Section 4. 1.

Time-based and Y-hased equations are used with the X-hased differential equations in special
cases. For example , it is convenient to use the time-base d equations for the powered segment
of unguided rocket t rajectory and for the first segment of the time-fuzed dispense r weapon
t rajectory. It is desirable to switch to the Y-hased equations when a weapon trajectory becomes
very steep like at the end of the long trajectory of a drogued bomb.

Details of the integration procedure and the fourth-order , Runge-Kutta formulas arc described in
Sectioi ~.3. I .  Application of these formulas to the X-based, differential equations is described
in Section 2.3.2.

2.3. I The Runge-Kutta Integration Formulas
The Runge-Kutta formula s provide a step-by-step method of finding dependent variable values at
given intervals of the independent variable. That is , values of the dependent variables at a
particular value of the independent variable are found in terms of their values at the previous step.
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Knowing the differentia l equations of a given system and the initial conditions, this process may be
continued until the desired range is covered. This integration method requires no preliminary
differentiatio n of the dependent variables beyond those prescribed. This makes it particularly
usefu l if certain coefficients in the differential equations are empirical functions for which
analytica l expressions are not known.

The standard , fourth-order , Runge-Kutta formulas, which yield very good results even for coarse
integration intervals , are described for a system of three ordinary differential equations. Consider
the system of differential equations.

.Ii ~ = F 1 (X , Y, V~~, V~~)

dV x
~~ F ,  ( X , Y , V~~, V~~) ( 2- 14)

dV y
~~~ F~ (X , Y, Vx, V y ).

• For example. i f ~he X-hased equations describing a projectile ’s trajectory were to be solved , then the
a ho%c equations ~ oukl he of the following form.

dY _ . V y

dV X
—

~~~~

--=  F 2 = -H (2- 15)

dV y _ -i-IV y - g(Y)
-

(See equations (2-6), (2-7), and (2-8))

If h is the integration interval , the (n+l )th values of Y. V~~, V y arc computed from the nth - .

values by 
•

= 

~
‘n + (K o + 2 K 1 + 2 K, + 1(3) - -

V~~~~1 
= V~~~+ 4~ (M 0 + 2 

~‘l + 2 M 1 + M 3) (2-1 6)

Vy~~ 1 
V y +~~~ (N 0 + 2 N 1 + 2 N ,  + N3)
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• where

ko = h F 1 (X e, ~
‘n’ V~ V y

ii n

K 1 = h F 1 (X 11 + Ii , ‘
~
‘n + -

~~ K~ , V Xn 
+ -

~~ M0, V~ +-~ N0)

1 (2  = h F 1 ~~n + -~~ h , Y~ ~~
-4

~~ l ’ V X + -~- M 1, V y +4N 1 )

1(3 = h F 1 (X n + Ii , Y~ + K,. Vx + M2. V~ + N ,)
(2-17)

and the values of M0 , M 1 , M
2 
, and M 3 are coniputer l by exactly the same formulas as the corre-

• spondingly subscripted K’s , except that F-, is used instead of F 1 . Similarly, N 0 , N 1 , N , and
N 3 are computed using F3 instead of F 1

The fourth-order , Runge-Kutta formulas can be expanded in a similar fashion to a system of four
first-order , differential equations.

When apply ing numerical integration formulas , it is necessary to decide the size of the integration
steps. For this problem , where very few integration steps are taken (i.e.. on the order of five), the
step size depends largely on the impact range of the specific trajectory. Therefore , it is necessary to
have an estimate of the impact range before starting integration.

One way of obtaining this estimate is to use the vacuum trajectory in finding the impact range. This
works well for low-drag bombs; however , this estimate may be off by as much as a factor of two or
three in the high-drag bomb case. Estimating the impact range will not be a problem in practice.
Since the impact range will be calculated rep etit ively,  one will always have a good estimate of the
impact range once the process is started.

2.3.2 Integration Algorithm
Originally, the integration was performed in the following manner. The fourth-order , Runge-Kutta
formulas were applied to the X-based , differential equations , (2-6), ( 2-7), and (2-8) . with a test
performed after each integr ation step to determine whether the bombs were below target altitude.
When the bomb was found to be below thi s altitude , a switch was made to the Y-based equations ,
( 2-10), (2 -I 1), and (2- I 2). Then a single integration step was taken to the targe t since the integration
step size in the Y-base d system was known exactly. (See Figure 6.) Using this procedure , it was
found that the solution accu racy for drogued weapons degraded rapid ly as release altitude went
above 2,000 feet. V~ was so close to zero at impact that sonic of the approximations internal to the
Runge-Kutta process had V X either zero or negative. As V X appears in the denominator, it
renders the expression indeterminate. The problem was resolved by adding two logical tests to the
calculations.

29



• Dl62- 10026-l

1 I I
p I I p
I I I 

I

i I I

I I I

~~~~~~~~~~~~~~ I I I

I I
ALTITU DE (‘1) I I ~~~~ I

I I I
I I ~~ I

I I I

I I ALT ERNATIV E I \
I ROOTING II INTERVAL

I I
I I ~~ I 

IMPACT
DOWNRANGE (X) 

I
ROOTING INTERVAL ~t

Figure 6. Equation Rooting - Integration in Y

Coordinates are switched if the vertical distance the bomb fell in the last downrange integration step
is greater than the distance to the ground. If the next integration step would put the bomb far
below the ground , this replaces a long step in X and a long step in V with a short step in Y
Calculation time is saved and accuracy is improved.

The other test is on the ratio of velocity components. When the vertical velocity is larger than the
horizontal velocity, the coordinates can be switched to advantage. I) ifferent steepness criteria,
ranging from I to 5, have been tried. Now the test is of this form :

-Vv
If ‘ 

~ 2. switch coordinates.Vx

Since this switch may take place some distance from the impact point , it is sometimes necessary to
take more than one step in Y .

A very simple method is used now. If the estimated range was divided into N x steps and “i” is the
number of steps taken so far , then the number of Y steps to take is:

M y = N x - i + l . i f ( N ~~ - i ) > 0 , or

M y = 1. if (N x i)~~~0 .
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The addition of these two tests has made it possible to calculate Snakeye trajectories fro m releases
as high as 70,000 feet without encountering singularities.

One final topic concernin g the integration algorithm needs to be covered. This concerns the question
of how many integration steps are required in the process of solving for the weapon impact point.
The final result is more accurate with a large number of integration steps, hut computer time is
increased. The final results may not be sufficiently accurate if too few steps are taken. Therefore ,
when choosing the number of integration steps to be used , a trade-off exists between accuracy and
computation time.

It was decided on the basis of experimental results to use five integration steps now. A typical
example of these results is given in Figure 7. This number of steps is somewhat arbitary and could
be adjusted easily for specific applications.

40 — M 117 BOMB
800 FEET SECOND

30 — LEV EL RELEASE

RELEASE ALTITUDE
20 • 30,000 FEET

I—.
LU
LU

10 -

0 _ ,,
__ea e “ .. — — . — —— ~~~. —

/ 10, 000 FEET
-10

/ \~ 20 ,000 FEET

—20 I I I I I I
1 2 3 4 5 6 7 8 9 10

N U M BER OF ST EPS

Figure 7. Integration Convergence

2.4 comparative Efficiencies of Coordinate Systems

The discovery leading to the development presented in this document was that the Taylor ’s series
with downrange as the indepen&nt variable (downrange-base) converged faster than that with time
as the independent variable (time-base) . However, no work was done to demonstrate directly that
trajecL ‘~y integration converged niore rapidly with downrange as the independent variable. Since
there arc advantage s to using time as the independent variable , the comparative efficiency of the
two approaches was investigated.

_  ~~~~• - - - • .~ .-••- - • -••• ~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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A computer program was devised to calculate weapon impact points with the X-based and time-based
equations using identical , fourth-order , Runge-Kutta , integration formulas. Pains were taken to
ensure exact comparability of results to cases using the standard algorithm. The Mk 82S drogued
bomb was the primary weapon tested. A comparison of results is given in Figure 8. The magnitude
of the error in the computed range is plotted for a given number of integration steps. The two solid
lines compare the errors for release at a 500-foot altitude; the dotted lines are f~r release at a 3.000-
foot altitude. Note that the errors are plotted on a logarithmic scale. Time-based integration for
this weapo n requires almost three times as many integration steps to achieve the same accuracy.
This comparison holds over a wider range of release conditions.

Two effects contribute to the difference in the case of high drag bombs: (1 )  the bomb’s deceleration
is more nearly constant when considered as a function of downrange , making it easier to approximate
its average over an integration step; (2) due to comparative placement of the integration steps , the
bomb is going much faster at release than at impact and travels much more than one n-th of its trajec-
tory in the first one n-th of its time of fall. The first part of the trajectory also displays the highest
deceleration rates. Therefore , the time-based integration takes longer steps in the more critical portion
of the trajectory than does downrange-based integration with the same number of steps. This factor
in the accuracy difference could be moderated greatly with a suitable method of picking unequal
length time steps. However , a number of complexities arises with the use of unequal steps and this
approach has not been pursued.

Also some comparative evaluation was done for the Ml  1 7 streamlined bomb. This weapon slows
down very little during fall , so the forces are more nearly constant and the integration intervals of
the two methods almost match. As a result , the comparative advantage of downrange-based integra-
tion is not as great , although it remains superior to time-based integration. This leads to a possibility
that time-based integration may prov e better overall for some special applications , such as stream-
lined, time-fu sed cannisters.

Over the entire spectruni of trajectory calculation problems , it seems that downrange-base integration
has about a two to one average advantage. Different methods have different logical advantages when
dealing with special situations such as altitude-fusing, time-fusing, loft-delivery, etc. To achieve the
optimum for specific weapons one may have to use a combination of coordinate systems.

ii
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3.0 ADAV~ATIONS i’() VARIOUS WEAPONS AND SAMPLE RESULTS

This section contains the mathematical / logical adaptations necessary to calculate impact points for
various weapons. Also, sample results and qualitative descriptions of these are given for a variety of
weapon types. The weapon types covered are: 

~~
) streamlined bombs , (2) guns , (3) drogued

bombs, (4) ‘cluster bombs, and (5) unguided rockets.

The tabular form in which the sample results are presented require s some explanation. There are
three entries for each identified set of release conditions. The first entry is the “range error” in
feet. This is the difference between the weapon range given in the ballistic table and the range
computed by the algorithm. A negative sign on the error means th at the computed range was
smaller than the table range. The next entry is “angular error” in milliradians. This converts the
range error into the equivalent angular error at the release point. This angular form is convenient
for comparison with other fire control system errors , most of which are basically angular. A good
rule of thumb is that  if the range error is less than 10 feet or the angular error is less than 1 milli-
radian the computation error will not significantly degrade the overall system accuracy. The third
entry is the “t i me error ” in percent. By including the uncoupled time equation in the integration ,
the time of fall can be coniputed quite accurately. Ability to compute the time of fall accurately
will become important when the algorithm is put to an operational application. The target for all
tables is at sea level and there is no wind; this matches the conditions in the ballistic tables.

3. I ‘ Streamlined Bombs

Calculation of streamlined bomb impact ranges does not require any adaptation of the process
described in Section 2 .3.2. Sample results comparing the impact ranges calculated by the algorithm
to those from Navy ballistic tables are given in Tables VII t hrough IX for the M l 17 , Mk 82 , and
M k 76 bombs, respectively. Table X gives results outside the normal A-7E operating region for the
M k lt bomb. I he tables show tha t  the algorithni yields good results over a large range of release
cond it 10’

3.2 
____

The approach taken with guns is to treat th em as streamlined bombs, handling the muzzle velocity
as a large ejection velocity. Sample results for the M61 gun are given in Table XI . The calculation
errors are defined as they were defined for bombs in the previous section, These sample calculations

f show that  the bombing algorithm produces excellent results without any added logic or calculation.

3.3 Drogued Ek)rnhs

One of the major successes of the algorithm was successfu l calculat ion of the impact point of a
drogued bomb. These bombs are dropped in a streamlined configuration and then vanes or a para-
chute is deployed to greatly increase their drag and retard their forward motion. Previous methods
were marginal in working with high-drag projectiles and were unable to cope with the change in the
drag function. Presently, drogued bombs are handl ed by splitting the trajectory into two parts ,
using a simple approximation for the streamlined portion and the algorithm for the drogued portion.
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Table VU Mi 17 Bomb Computation Accura cy

RELEASE SPEED (KNOTS ) 
____________________________RELEASE 200 400 600ALTITUDE 

RANG E ANGULAR TIM E RAN G E ANGULA R TIM E RANGE ANGULAR TIME(FT) 
ERROR ERROR ERROR ERRO R ERROR ER ROR ERRO R ERRO R ER RO R

____________ 

(FT) (MR) (%) (FT) (MR) (°‘o) (FT) (MR) 
____________

1,000 ±1 0.1 0.0 0 0.0 0.1 0 0.0 0.0

3,000 0 0.0 0.0 +1 0.0 0.0 0 0.0 0.0

5,000 +1 0.1 0.0 +1 0.0 0.0 -1 0.0 0.0

7 ,000 + 1 . 0.1 0.0 +2 0.1 0.0 —2 0.0 0.0

9 ,000 +1 
— 

0.1 0.0 +1 0.0 0.0 +1 0.0 0.0
11,000 +1 0.1 0.0 +2 0.1 0.0 —2 0.0 0.0
13,000 +1 0.1 0.0 +1 0.0 0.0 —4 0.1 0.0
15,000 + 1 0.0 0.0 +2 0.0 0.0 +2 0.0 0.0

R EF E R E N C E :  NAVAL WEAPONS LABORATO RY BAL LISTIC TABLE NUMBER 101, JULY 1967
CONDITIONS: LEVEL RELEASE

NO WIND
TARGET AT SEA LEVEL
N O EJECTION VELOCITY

Table VIII Mk 82 Bomb Computation Accuracy

RELEASE SPEED (KNOTS ’s 
__________________________

RELEAS E 200 400 600
A L T I T U D E

RANGE ANGULAR TIME RANGE ANGULAR TIME RANGE ANGULAR TIME
ERROR ERROR ERROR ERROR ERROR ERROR ERR OR ERROR ERROR

_________ 

(FT) (MR) ( ° ‘
~ 

(FT) (MR) (°e
~ 

(Fl) (MR) (%)
1,000 0 0.0 0.0 +1 0.0 0.0 +1 0.0 0.0
3,000 0 0.0 0.0 +1 0.0 0.0 0 0.0 0.0
5 ,000 +1 0.1 0.0 +1 0.0 0.0 0 0.0 0.1
7,000 0 0.0 0.0 +1 0.0 0.0 +2 0.0 0.0
9,000 0 0.0 0.0 0 0.0 0.0 +1 0.0 0.0

11,000 +1 0.1 0.0 0 0.0 0.0 +1 0.0 0.0
13,000 +1 0.1 0.0 +1 0.0 0.0 0 0.0 0.0

15,000 +1 0.0 0.0 0 0.0 0.0 -l 0.0 0.0

REFERENCE: NAVAL Vi EAPONS LABORATORY BALLISTIC TABLE NUMBER 169 , MARCH 1969
CONDITIONS: LEVEL RELEASE

TARGET AT SEA LEVEL
NO W I N D
NO EJ ECTION VEL O CITY
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Table IX Mk 76 Bomb Computation Accuracy

RELEASE SPEED (KNOTS)

RELEASE ________ 

200 400 600
ALTITUDE RANGE ANGULAR TIME RANGE ANGULAR TIME RANGE ANGULAR TIM E(FT) ERROR ERRO R ERRO R ERRO R ERRO R ERROR ERROR ERROR ERRO R
_________ 

(FT) (MR) (%) (Fl) (MR) (%) (FT) (MR) (%)
1,000 0 0.0 0.0 0 0.0 0.0 1 0.0 0.0
3.000 +1 0.0 0.0 -1 0.0 0.0 -6 0.1 0.1
5.000 +1 0.0 0.0 —_ —2 0.1 0.1 — 11 0.2 0.1

7 ,000 0 0.0 0.0 -2 0.1 0.0 —15 0.3 0.0
9,000 +1 0.1 0.0 —3 0.1 0.0 +1 0.0 0.0

11,000 0 0.0 0.0 —4 0.1 0.0 —26 0.5 0.0

13,000 +1 0.0 0 .0 —6 0.2 0.0 —34 0.7 0.1

15,000 0 0.0 0.0 —.9 0.3 0. 1 —39 0.8 0.1
REFERENC E: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 086 , OCTOBER 1966
CONDITIONS: LEVEL RELEASE

NO W I N D
TARGET AT SEA L E V E L
NO EJ ECTION VELOCITY

Table X Mk 76 Bomb Computation Accuracy In Extended Delivery Regime

RELEASE SPEED (KNOTS )
RELEA SE 600 900 1,200

ALTITUDE RANG E ANGULAR TIME R ANG E ANGULAR TIME RANGE ANGULAR TIM E(FT) ERR O R ERROR E R R O R  ERROR ERROR ERR O R ERROR ERROR ERROR
___________ 

(Fl) (MR) (%) (FT) (MR) (%) (Fl) (MR) (9o )

10,000 —22 0.5 0.0 +4 0. 1 0.1 — 152 2.2 0.2
20,000 —42 0.8 0.0 —43 0.7 0.1 —91 1.2 0.3
30,000 —48 0.8 0.0 —8 2 1.1 0,0 —27 0.3 0.0

40,000 —15 0.2 0.2 —.11 0.1 0.3 —39 0.4 0.3

50,000 —182 2.2 3.1 — 123 1.3 1.9 —73 0.6 0.1
60,000 —38 0.4 0.2 +28 0.2 0.2 

~ 
0.3 1.1

70 ,000 —19 0.7 4.8 —~7 0.1 5.3 — 21_J 0.1 1.8
REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 086 , OCTO BER 1966
CONDITIONS: LEVEL RELEASE

NO WIND
TARGET AT SEA LEVEL
NO EJECTION VELO CITY
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Table XI M61 Gun With M56 Round Computation Accuracy

RELEASE SPEED (KNOTS)
DIVE RELEASE 300 450 600

~NGLE ALTITUDE RANGE ANGULAR TIME RANGE ANGULAR TIME RANGE ANGU LAR TIME(DEG) (FT) ERROR ERRO R ERRO R ERROR ERROR ERROR ERROR ERROR ERROR
— ________ 

(FT) (MR) (%) (Fl) (MR) (%) (Fl) (MR) (%)
15 1,000 — L 0.1 0.6* — 1 0.1 0.0 —l 0.1 0.0

15 1,250 — 1 0.1 0.5* —2 0.1 0.5* —1 0.1 O.5~
15 1,500 —2 0.1 0.3* 

- 

— 2 0.1 0.8 —2 0.1 0.4*

20 1,000 0 0.0 3.0 0 0.0 0.0 0 0.0 1.1*
20 1,250 0 0.0 0.0 0 0.0 0.7* 0 0.0 0.0

20 1,500 —1 0.1 0.5* 0 0.0 0.6* —1 0.1 0.7*

20 1,750 — 1 0.1 0.4* —1 0.1 0.0 —l 0.1 0.5

SlIME ERROR OF 0.1 SECOND
REFERENCE: ARMAMENT MEMORANDUM REPORT 64—5, FEBRUA RY 1964
CONDITIONS: TARGET AT SEA LEVEL

NO WIN D
3,300 Fl ‘SEC MUZZLE VELOCITY

As no ted before, the treatment of retarded weapons is complicated by the discontinuity in the drag
coefficient at drogue deployment. If it is assumed that the deployment occurs instantaneously at a
time tp which is known or can be calculated in advance , the differential equations (2 - I )  have
discontinuous coeffi cients at t D due to the change in the ballistic drag coefficient K D .  Corre-
sponding to t D is point X0 at which (2-6) and (2-7) have discontinuous coefficients. In this
case, it is best to split the integratio n domain into two parts corresponding to the different dra g
regions. (See Figure 9.)

If the drogue deployment occurs shortly after release as for the Mk 82 Snakeye drogued bomb , this
difficulty can be overcome easily. Since XD is very small compared to X R and the bomb has very
little drag in the first region, it is sufficient to integrate from release to XD in one step. Normally,
tD is given as a function of the dynamic air pressure. The point XD and the values of VXD VY D ,
and 

~ D must be computed before the Runge-Kutta procedure can be used to integrate from XD to
XR .  It is probable that due to shortness of tD (0.5 second) the vacuum solution would suffice. How-
ever, it is not difficult to account for most of the drag effects in the interval (0, XD) as follows.
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( IMPACT)

Figure 9. Drag Discont inuity

XD is expanded first , in a power series in t about the point t = U .  That is:

X(t ) = X(0) + *(0)t ~~~~~~~ t 2 + . . .  (3 -I)

The coefficients are computed readily from the release conditions. Denoting the release conditions
by the subscript zero,

X(0) = 0, X( 0) = 
~

‘xo’ X(0) = 410X(0) = H0Vx0 (3-2)
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Retaining three terms in the series and evaluating at t D yields

X D = Vxo t D (l - .5 FlØtf~). (3-3)

A similar expansion yields 
~ D ’

= Y0 + t D (V xo - .5t D (HOV yO +g(Y 0)). (3-4)

Differentiating (3-1) with respect to t and evaluating at t D gives

VXD = Vxo (l - HOt D). (3-5)

Similarly, V YD is given by

V YD = V y o -t D (H 0Vy0 + g(Y 0)). (3-6 )

The initial value of X D ,  ~
‘1)’ V X D ,  and Vy0 needed for the integration process over the high-

drag region is given by (3-3) through (3-6), respectively. The integration over this region is performed
as described in Section 2.0.

Sample results for the drogued Mk 82S bomb are given in Table XLI.

3.4 Cluster Bombs

A cluster bomb , which is a dispenser containing many individual bombs , is generally released in a
streamlined shape. Then , at some predetermined condition (altitud e, time after release , slant range ,
etc.), the bombs are released from the dispenser. The bombs have a much higher drag-to-mass ratio
than the dispenser and slow down rapidly. Ballistics agencies have developed dra g tables for a
fictitious bomb which simulates the characteristics of the center of the pattern as though it were a
single bomb .

ii
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Table XII Mk 82S Bomb Computation Accuracy
REL EASE SPEED (KNOTS)

RELEASE 200 400 600
ALTITU DE
‘Fl’ RANGE ANGULAR TIME RANGE ANGULAR TIME RANGE ANGUL A R TIME

ERRO R ERROR ERROR ERRO R ERROR ERROR ERROR ERROR ERROR
___________ 

(Fl) (MR) (°o) (Fl) (MR) (0~ ) (Fl) (MR) 
____________

1,000 +1 0.3 0.0 +1 0.2 0.0 0 0.0 0.0

2 ,000 +1 0.3 0.0 0 0.0 0.0 0 0.0 0.0
3,000 0 0.0 0.0 0 0.0 0.1 -1 0.1 0.0
4,000 +1 0.2 0.0 0 0.0 0.3 -1 0. 1 0.1
5 ,000 0 0.0 0.0 —1 0.1 0.0 —3 0.3 0.0

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 010 , OCTOBER 1964
CONDITIONS: 20°D I VE

TARGET AT SEA LEVEL
NO WIND
NO EJECTION V ELOCITY

Like drogued bombs, the cluster bombs are modeled by breakin g the trajectory into two parts. The
fi rst describes the trajectory of the streamlined dispenser and the second describes the t rajectory of
the center of the pattern of bombs released by the dispenser. The simple approximation used for
the first trajectory segment of the drogued bombs is not adequate for cluster bombs because the
trajectory segment is much longer: therefore , a regular integration process niust be used. The sample
results given in Table XIII for the CBU-24B/B weapon are quite good , considering that the pattern
is about I ,000 feet in diameter.

Two types of fuzing systems are considered here : one is altitude sensitive , the other is time
sensitive. The basic coordinate system of the algorithm (i.e., the X-based system) works very well
for calculating both segments of the trajectory of the altitud e-fuzed weapon. During the fi rst
segment of the trajectory for this case, a hypothetical targe t is assumed at the fuzing altitude and the
calculations are performed conventionally. For Table XII I , two range steps and one altitude integra-
tion step were used. Next , the same integration process was repeated for the second segment of the
trajectory which is between the fuzing point and the actual target. For Table XI II , thre e range steps
and one altitude step were used. In other words, two conventional trajectory calculations are
performed to find a single impact point of an altitude-fuzed cluster bomb.

The same method cannot be used for tinie-fuzed cluster bombs. Normally, the time of fall is not
calculated when the X-based equations are used. The approach taken is to use the time-based
differential equations for the first segment of the trajectory. This is a simpler alternative than an
elaborate rooting scheme. The first portion of the trajectory can be integrated accurately because it
is short and low drag. The X-based equations are used for the second segment of the trajectory .

4 1 
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Table XIII CBU—24 B/B Cluster Bomb Computation Accuracy

____________________________ 

RELEAS E SPEED (KNOTS) 
____________________________

RELEASE 420 500 600
ALTITUDE. RANGE ANGULAR TIME RANGE ANGULAR TIME RANGE ANGULAR TIME

ERROR ERROR ERROR ERROR ERROR ERRO R ERRO R ERROR ERRO R
________ 

(Fl) (MR) (%) (Fl) (MR) (%) (FT) (MR) (%)
5 ,000 — 2 0.2 0.3 —1 0.6 0.5 —33 2.8 1.5

6,000 — 2 0.2 0.3 ..-8 0.6 0.4 —28 2.0 1.3

7,000 -2 0.1 0.2 -9 0.6 0.5 -25 1.5 1.1

8,000 — 3 0.2 0.3 —9 0.5 0.5 —22 1.2 1.0

9,000 —4 0.2 0.2 —1 1 0.6 0.6 —21 1.0 1.0
10,000 —5 0.3 0.3 —11 0.5 0.6 —19 0.9 0.9

*40Q.. KN QT SPEED NOT IN TABLE FOR HIGHER ALTITUDES
REFERENCE: F—105D BALLISTIC TABLES CBU—24 B ‘B OR CBU 29 B’B, FEBRUARY 1968
CON D I T IONS : 300 DIVE

TARGET AT SEA LEVEL
NO WIND
6 FT ‘SEC EJECTION VELOCITY

2 ,500 FT FUSE ALTITUDE

3.5 Unguided Rockets

The unguided rocket is more difticult because of the added problems of thrust and change of mass.
These functions are provided as tables wi th  time as the independent variable. Linear interpolation is
used for values between points in the tables. Since the primar y variables are given as a function of
t ime , it is more convenient and accurate to use the time-based differential equations for the powered
segment of the trajectory. The X-based equations are used for the rest of the trajectory.

The necessary adaptations for the powered phase are covered next. At any time t R . the acce leration
due to propulsion is

FT

Where

FT = Rocket thr ust force at ti me t R

M R = Rocket mass at time t R 1 ’
t

fl
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To form a function comparable to the aerodynamic drag function , H , we compute

V R
~

1R = —

V

The total drag function is

H = H A + H R .

where 
~ A is the drag function for unpowered weapons (i.e., for unpowered weapons H = H A).

A program has been written to calculate impact range s for unguided rockets. However , ballistic tables
which can he used to compare results are not available at this time.

3.6 Sensitivity to Integration Interval Size

Results given in the preceding sections are based on divid ing the exact trajectory length into the
appropriate number of integration steps. The argument was that this is valid because the trajectory
length changes little from one calculation to the next: therefore , use of the previously calculated
range would yield almost the same integration steps. This section deals with the validity of this
assumption. In Section 3.6.1 , the maximum deviation of the release conditions which might be
achieved by maneuvers during a single calculation interval is estimated. The corresponding effect of
these deviations of the impact range is found in Section 3.6.2. This is done for a low-drag bomb
( M I I 7 )  and a drogued bomb (Mk 82S) for short , medium , and long trajectories. The maximum
percenta ge im pac t ran ge dev iation due to maneuvers is estimated on the basis of this data. Finally,
these deviations are included in determining the integration interval to demonstrate that they do
not affect the results adversely.

3.6. 1 Maximum Deviation in Release Conditions Due to Maneuvers

The following assumptions were made in estimating maximum deviation possible in release conditions
during a single calculation interval.

a. The A-7 aircraft is the aircra ft of interest.
h. The calculation interval is 0.1 second.
c. Only positive-load factors are considered , since weapons are not released under negative-

load-factor conditions.

The release conditions affecting the impact range are alti tude , velocity, and dive angle. Considering
velocity fi rst , it can he reasoned that the change in the magnitude of velocity in 0. I second is
negligible. Consider a hypothetical example where an accelerating force equal to the aircra ft weight
is applied. That is, this force exceeds that needed to overcome drag and lift . This acce leratin g force
would change the velocity magnitude in 0.1 second by

= a(0. l ),
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where a is the acceleration , and is equal to the gravitational acceleration for the chosen example.
Therefore ,

= 3.2 ft/ sec

If the average bomb release velocity is assumed to be 400 knots, then the above ~ V would be less
than 0.5’~ of this velocity. Since the available accelerating force is normally a small fraction of that
assumed in the hypothetical example , it can be reasoned that the corresponding velocity deviation
in 0.1 second is negligible.

The maximum devia t ion in dive angle due to maneuvers is estimated next. The deviation in direction
an object is traveling during a time interval ~ t at a velocity V and pulling a turn acceleration

a is,

= ~~~~~~~ radians ,

where
A d = AtV andr V 2/a , or ,

~e =  4~~t.

Therefore , the maximum deviation in dive angle is achieved when the ratio a/V is the greatest.

Looking at the maneuverability curves in the flight manual of the A-7A aircraft , the conditions
which correspond to the maximum A9 are a 7g load factor at sea level with a corresponding
velocity of 385 knots. These limits are for a 25 ,000-pound clean aircra ft with a TF 30-P-6 engine
on a standard day. Based on the above information , it is assumed that Sg is the maximum
acce leration tha t can be pulled by an armed aircraft.

Estimating the maximum dive angle deviation in 0.1 second using 5g for a and 385 knots for
V in the ex pression for A~ it is found that

Aemax = 1.4 °

Next , the altitude change in one calculation time interval is estimated by assuming that the dive
angle at the beginning of this interva l is maintained throughout the interval. Inspecting the value
of Aemax , this can be considered a good assumption. Therefore , knowing the aircra ft velocity
V and dive angIe 0 , the altit ude change in 0.1 second is,

AY = (0. I )V sin e
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Summarizing the results ol’ the  estimated maximum deviations in the release conditions in one
calculation interval:

a. The deviation in the magnitude of velocity is negligible.
h. The maximum deviation in the dive angle is 1 .4 degrees.
c. The change in a l t i tude is AY = (0. 1) V sin 0.

3.~ .2 E ffects of ’ Maneuvers on Impact Ran ge Ca lculation s

Recall tha t  the objective here is to demonstrate the usability of the impact range from the previous
calculation in obtaining the integration step size for the present calculation. This is done by
demonstrating that  the results of impact range calculation obtained in this manner are, f ’or all prac-
tical purposes, the same as those obtained when the exact impact  range is used to obtain the
i ntegration step size.

l’he maximum deviation in release conditions due to maneuvers was estimated in the previous
subsection. Next , the  e ffects ot’ these deviations on the impact range calculations are presented in
two st eps: ( 1 )  the effect of ’ these release condition deviations on the impact  range is est imated
to determine  how much the impact range mig ht deviate in one calculation interval :  ( 2 )  the  true
impact  range is perturbed by this  amount  and is used to obtain the inte grat ion interval  size.

— \ l a x i i n u n i  impact range deviation in one calculation interval  is estimated for  a low—drag bomb ( M I I  7)

~and a drogued bomb ( NI k 82S ) for short , medium , and long trajectories. Results for these cases are
gi~cn in Table XIV . In obtaining these results , the et ’fects on the impact range due to a l t i t ude  and
dive angle deviations are assumed uncoupled , since t lw coupling produces only second—order ef ’t’ect s.
As mentioned previous ly. unIv  positive-load factors are considered , On the basis of ’ the results in
[‘able XIV , a conservative 5’ is assumed across the board as the m a x i m u m  possible deviat ion in the
impact range due to maneuvers. Note , for long trajectories the m a x i m u m  deviation is more like 1’

Fin ally.  Tables XV and XVI show calcul ation errors in impact ranges t ’or the \l 117 and Mk ~2S
honibs using integrat ion steps based on perturbed impact ranges equal to the trL le impact range minus
5 ’; of ’ this range to account for  maneuver deviations. The points in these tables correspond to the
points in Tah~’~s V II  and V I I I . which ~ crc obtained by using the exact impact r inge to establish
the in te gr at io  intervals. ‘I’hese r esults show that  even under the most e~ tre iue maneuvers the
errors in impact-range calculations caused by those maneuv ers will he acceptable.

3.7 Advanced Appl ica t ions

Beyond the app lication to an aircraft  fire control system . use of the algorithm can provide improve-
ments in severa l areas, Four areas are listed below:

3.7. 1 Ba l l is t ic  Table (‘al eu lat i on

(‘urrent staridartls of accuracy could he maintained ,  wi th  decreasing computer costs, if ’ the a lgorithm
approach to trajectory int e grat ion were subst i tuted t’or the methods in use. Ilowever. as ballistic
tables arc not calculated often , th e cost saving may not just i fy  the cost of ’ developing new computer
progra ill s.
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Table XIV Deviation in Impact Range Due to Altitude Deviation in 0.1 Second and a 1.4 0 Deviation
in Dive Angle ESTIMATED MAXIMUM

RELEASE CONDITIONS RANGE DEVIATION TOTAL
DUE TO: EVIAT I N

DUE 10

BOMB TRAJECTORY ALTITULE VELOCITY DIVE ANGL L T DIVE ANGLE MANEUVERS

__________ 

LENGTH (FEET) (KNOTS) (DEGREES1

LOW SHORT 1,000 200 —50 —1,4 + 4.4 + 3.0

DRAG MEDIUM 8.000 400 0 —0,0 + 2.1 + 2.1
(M ill LONG 15,000 600 + 45 0,0 + 1.0 + 1.0

H I GH SHORT 1,000 200 —SC —1 .8 + ~ 3 +2.5

DRAG MEDIUM 2,500 400 —30 —0.5 + 2,2 + 1,7

tMk 82S~ LONG 5,000 600 0 
— 

0.0 + 0.9 +0.9

NOTES: (1 NEGATIVE DEVIATIONS INDICATE THAI THE IMPACT RANGE BECAM E ~IALLER
2~ ONL Y THOSE DI V E ANGLE DEVIATIONS CAUSE C BY POSITIVE LOAD FAC T~,RS ItERE CON SIDERED

Table XV Mill Bomb Computation Accuracy with Initial Range Estimate 5°c Short

RELEASE SPEED ~KNOTS\
RELEASE 200 400 600ALT I TUDE

FP RANGE ANGULAR TIME RANGE ANGULAR TIME RANGE ANGULAR TIME
ERRO R ERROR ERROR ERROR ERROR ERRO R ERROR ERRO R ERROR
~FT) IMR’ (°O\ IFT) (MR) ‘o~ IFT) (MR) 

________

1,000 +1 0.1 0,0 +1 0,1 0,0 0 0.0 0.0

3,000 0 0,0 0.0 -+ 1 0.0 0.0 0 0.0 0.0
5,000 +1 0.1 0.0 + 1 0.0 0.0 —~1 0.0 0.0

7 ,000 +1 0.1 0.0 +2 0,1 0,0 — l 0,0 0.0

9,000 + 1 0.1 0,0 + 1 0.0 0,0 + 1 0.0 0.0
11,000 +1 0,1 0.0 +2 0,1 0.0 —3 0.0 0.0
13.000 +1 0,1 0,0 +1 0.0 0.0 —‘4 0.1 0.0

15 ,000 +1 0.0 0.0 +2 0.0 0.0 +2 0.0 0,0
REFERENCE: NAVAL Y~EAPONS LABORATORY BALLISTIC TABLE NUMBER 101, JULY 1967
CONDITIONS : LEVEL RELEASE

N O~~IND
TARGE I AI SEA LEVEL
NO EJECTION VELOCITY
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Table XVI Mk 825 Bomb Computation Accuracy with Initial Range Estimate 5% Short

RELEASE SPEED (KNOTS)
RELEASE 200 400 600

ALTITUDE
RANGE ANG U L A R  TIME RANGE A N G U L A R  TIM E RANG E A N G U L A R  TIME
ERROR ERRO R ERRO R ERRO R ERROR ERRO R ERROR ERRO R ERROR

Fl) (MR) (°o) (Fl) (MR) (°o) (Fl) (MR) (0~ )

1,000 +1 0.3 0.0 +1 0.2 0.0 0 0.0 0.0
2 ,000 +1 0.3 0.0 0 0.0 0.0 0 0.0 0.0
3,000 0 0.0 0.0 0 0.0 0.0 —7 0.9 0.6
4 ,000 + 1 0.2 0.0 0 0.0 0.3 0 0.0 0.1
5 ,000 0 0.0 0.0 0 0.0 0.0 ‘-‘1 0.1 0.0

REFERENCE: NAVAL Vi EAPONS LABORATORY BALLISTIC TABLE NUMBER 010 , OCTOBER 1964
CONDITIONS. 20° D I V E

TARGET AT SEA LEVEL
NO WIND
NO EJ ECTION VELOCITY

3. 7 .2 Fire Control System Simulator

One type of work which requires the calculation of many ballistic t rajectories is ti le simulation and
evaluation ol a t ’ire control system. Man current s imulat ion programs are t’orced to rely heavi ly 011
questionable statistica l assumptions about the  kind of errors Wi1ich will  he experienced and how
they xv i Ii combine in weapon deliver y . The ‘ f ’orce ” is appli ed by the sheer cost of runn ing  numerous
trajectories in a Monte (‘arlo s imulat ion.  By reducing costs , perhaps by a (‘actor of 100 compared to
standard ballistic methods , the  algorithm can economically provide more accurate and detailed
simulation and analysis ot ’ proposed (‘ire control systems.

3.7 ,3 Ball istic Miss i le Guidance

As the requirements f ’or missile accuracy are tightened , along with  a need ior greater flexibil i ty,  the
need for using an explicit  gu itlance t echn ique based on trajectory integration increases.

Ill SOflIC applications , th e  new integration method will provide the key to obtaining this iniprov ed
ca pability wi thout  as grea t an increase in guidanc e computer power as would be required otherwise.

3,7 . 4 (‘uninia nd— ( ;u id~’d Bomb

‘Fhe comm and—guided honib is a concept which has been studied as a means ot improving th e accuracy
of conventional weapon deliver y wi thout  greatly increasing the cost per pound of warhead delivered.
The idea is to put a minimal control s~ st e i n  and command receiver on au otherwise ordinary bomb.
MI expensive guidance computers and sensors for target acquisition and bomb t rack ing are in the
a i rc r a f t , wh ere th e ir  expense may he am orti zed over niany deliv ered weapons. l’he bombs arc
rekased in much the san1~’ ~~~ as unguided bombs , then the guidanc e system in the aircra t’t com-
putes com mands au t oiu , a t i c a l ly  to mak e small  corrections to the bomb trajectory as the bomb falls.
This can y ie ld sub stant ia l l y  improved accuracy , compared to unguid ed bombs , at a cost increase tha t
is sma ll couii ~’ared to tile .upproaches used in guided missiles.
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4.0 AUX I L I ARY TOPICS

4. I Computer Requirements

Based on general judgment and automated estimates(Referen ce 1), it was believed tha t the algorithm
- was competitive in terms of computer memory and time requirements. Early in 1968 (before the

new atmosphere model was developed), a better estimate was sought. To this end , a basic machine
language progra m was coded. To make the job easier , a simple hypothetica l instruction repertoire
was assumed. Less than 20 different instruction s were used , but the machine was assumed to have
an index register and floating point arithmetic. It was assumed for this prelimin ary estimate that
double precision ari thn ’etic was not required. The entire repetitive portion of the algorithm was
programmed , including al ! subroutines. Initia l functions were relegated to a separate routine which
was neither t ime critica ~ nor coded.

Table XV II  lists the characteristics of ’ the main program (MP) and its eight subroutines. MP uses
these subroutines to take N fourth-order , Runge-Kutta integration steps with  downrange (X)
as the independent variable and one fourth-order , Runge-Kutta rooting step with altitude (Y) as
the independ ent variable. ‘Fhe general layout of the progra m was chosen to minimize the storage
requirement w i thou t  unreasonably penalizing the execution time. The subroutines are:

Integrate in X ( INTX )
Run g e-kut ta  Equations in X ( R K X )
Run gL’-ku t t a  Equations in V ( R K Y )
(‘ounm on Runge- Kutt a Eq uation s (RK C)
l)ru g Force Equations (DRAG )
Atmosph ere Model (AT M O)
Ballistic (‘oe f f’icient Lookup (BAL )
Power Subroutine (PWR )

Table XVII Algorithm Code Characteristics

R NE STORAG E TIMES N U M B E R O F I N S T R U C T I C N S B Y TYPE
______OUTI ( W ORD )  EXECUTED LOGIC T R A N S F E R  ADD MULTI PLY D I V I D E

MP 68 1 11 31 11 13 1
INTX 66 N 12 31 12 13 3
RKX 22 4N 2 9 2 7 2
RKY 11 4 2 7 1 4 2 4
RKC 8 3 N + 1  2 1 5 0 0
DRAG 15 4 N - I-4 5 7 1 2 0
ATMO 91 4N 4- 4 6 23 4 6 4
BAL 18 4 N + 4  6 9 7 1 1
PWR 44 12N + 12 8 9 7 12 1

TOTAL (N=1) 349 375 638 319 430 84

TOTAL ~N~ 5) 349 1.135 1.994 987 1,314
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NIP calls INTX N times t’or the forward integration , and directly calls I)RAG , RKY , a nd RK S on ce
each for the rooting step. INTX calls l)RAG , RKY , and RKS. DRAG calls ATMO and BAL and
uses PWR to calculate a square roOt. ATMO in turns uses PWR to evaluate the exponential function
in the atmosphere model. Table XV II shows the resulting number of times each subroutine is used .
depending on N , the uiumber of forward integration steps to be taken. At the bottom of the table
are the totals for each class of instructions , for one complete program execution , f’or N = I or
N = 5 . By taking these totals and the typical instruction execution times for a given computer ,
the approximate execution time can be calculated for that  computer it ’ its instruction repertoire
does not vary severely t’rom that hypothesized. For example , these instruction times , typical of the
IBM 4-Pi Model EC airborne computer , were used:

Logical: 3 microseconds
l)ata ‘I’ransfer: 2 microseconds
Floating Point Add: 5 microseconds
Floating Point Mul t ip ly :  10 microseconds
Floating Point Divide: 14 microseconds

I, sing t hese sfx ’ L’dS and the  totals in Table XV I I . total execution times were calculated:

I f \ I 9.46 2 milliseconds
It \ 5 29.052 milliseconds

I he e s t ima t e  of 34° ss ord storage does not vary wi th  N . Because of ’ the highly iterative nature of
( lie eak’ u la (uutu ~. a small change in the p rogra m can make a large change in t J~e total ex ecution time.
In the  progr a In .i~ coded . half ’ the total tulle is used up in the atmosphere calculations. This is an
area ~ here n lan ~ cl iauig ~.’s a re possible, and it has been the subject of ’ considerable research this

C J i .  (See Section 4 .2 . i

\ Iorc r ecent . h u t  less detailed . est u n iatc s in dicate  a possible f ’ive to one reduction in the computer
ti me require d .  I his is still for the simple but powerful  hypothetical computer. The required
execution t ime Oil the  ..\-7l ’ fire control computer  has not been estimated. Two opposing eI ’fects
w i l l  change the esti m ates:

l’he computer  in tile A-7 1 is slower and less powert ’ul than tile hypothet ica l
compu ter. ‘I’his will tend to increase both execution time and memory
requirem ents.

or an operational application , more advantage can be taken of the i terat ive
nature of the calculation to reduce the average execution time. The pro-
gr ani n lin g for this will  incre ase the memory retjtu ire ull e fl t . however.

so 
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4,2 Derivation of’ New Atmospheric Model

The available expressions describing atmospheric density are too complex to be programmed effi-
cient l v on an airborne computer. There are three expressions , one for each of three altitude
regions between sea level and 104 ,986 feet. It is necessary to evaluate either an exponential
funct ion or a funct ion to a nonintegral power in each ot’ these regions. Theret’ore. a search for a
more appropriate representation of ’ the atmospheric density was conducted.

Before  proceeding , a brief description ol’ the source of the atmospheric standard is given. Orig-
inally ,  the I 962 U. S. standard atmosphere was used ~fl tile calculation of weapon impact ranges.
(See Ret ’erence 7,) Af ’ter a more desirable representation of ’ the 1962 atnlosphere was developed.
it was decided to incorporate the 1965 revision into this model.

In th e f’irst I 04.986 feet of ’ a l t i tude  this revision consists of ’ a slight modification in tile expressions
and the  boundaries het~seen which these expressiouls apply. The result of these variations is seen
as a deviation in about the fi ft h digit  when both ex pressions are calculated.

l’he remainder of t in s Section consists of t~~o parts. Section 4.2. 1 includes an outline and the
resu lts of ti l e search t’or a more ef ’I’icient representation of the atmn ospl ler ic density. The I 962
U. S . standard atmosphere was used at this t ime.  Section 4 .2.2 consists of ’ a more detailed
de rivation of ’ the series expansion that  was t ’ina lly adopted. In tins case t h e  1965 revision to the
U.S. st auuI ; ’i~d atmosphere was included.

4. 2. 1 Search t’or an Accurate Power Series

‘l’he method used to find an appropriate poweu series representation of the at mospheric density was
to t ry  several expansions and pick the best one. ‘l ’hree power series approximations were obtained
by making use of ’ the  (‘heh ys f l ev , Legendre . and laylor expansions.

The 1962 U.S. standard atn iosp heric nlod el was used at this  point without  the 1965 n lodi f icat i o mls ,
‘File atmospheric ile nsit ~ equations f rom this  model are given below. These expressions can be used
also t’or couli par i so n ~ i th  tile modif ied expressions given in Section 4 ,2 ,2 , N ot e t h at whe n two or
m o re con sta nt s a~ pearetl ill these expre ssions they were multiplied out. Also , the expression for
te mperature lla s been incorporated.

‘[he variables involved in these atmospheric density expressions are :

~~ = atmil ospheric density ( lb/ f t 3)

= geopotential a l t i tude  (it )

A = geometric a l t i tude  (f t )

~~ here ,

— A (20.855,53l)Hg — A + 2 0 ,855,53l 
(4-I)
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First Region: 0 
~ 

11 g < 36,089.239

= 1288.15 - .00198 1 2) U’Ig)l ( I  -(6.87 55856X l0 6 ) (Fi g) l  5,25587~~

(4 -2)

Second Region: 36,089.239 
~ 

lI ~ < 65 ,616.798

P~, = ( .0227 1887 1 82)e 4.8O634 8X I 0 5(H 36 ,089 .239) (4_ •~)

I ’hird Region: 65 .616 .798 ~ H~ < 100,000

= 
1.190681437 L I  + 1 .4068775 X 10 6 ( l l  -65616. 79)~~ 

-34 .163 19 5
W 12 16 .65 + .0003048 ( I I ,, -65616 ,798) 1

( 4-4 )

N ot e tha t  the  upper l imi t  ot 100 ,000 t’eet was chosen rather arbi t rar i ly .  The actual  value given for
his l imi t  was I 04 .’)86, 87 7 f ’eet.

1 he proce dure for  f ’i l l d i ng a power series represenati omi using tIle Chehysh ev expansion ~v ill be out-
li ned next .  In principle this  proced Lure is the same as that  used f’or the  Legendre expansion. A
detailed descri pt ion of the Legendre expansion is included in Section 4,2 , 2 :  theref ’ore . t he Legendre
exI)a nsiOfl ~ i ll not he discussed here. Since the  I a v l o r  series expails ion is f ’a i r ly well  known ,  it will
not he d usc u”,sed cit h er.

In preparation for  th e  ( ‘h ehvs h ev exp ansion , tI le atmospheric density expressions iii ~acIl a l t i tude
regio n need to he t ra u ls f o r n le d  so tha t  t he range of the  independent  variable x is . — I ~ x ~

‘ I
[hen , t he object is to expand P,~, . t he a tmospher ic  densi ty.  i n terms of t u e  ( ‘heb ys Iie ~ po lynomials

of t he second kind .

FI lese p o lynomials  are given helo~~:

t o ~x )  = I

U 1 ~~ =

II, ( x l  = 4x” -l

(~~ ( x )  = $x’~ -4x (4-5)

U 4 ( x )  = l 6 x 4~~l 2 x 2 + I

t 15 (x )  = ~~~~ - 3 x 3 + ~x

F t c ,

‘I’hese func t ions  are ort hogonal wit  II respect to tI le weight I’unct ion ~~l — x 2 
,
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The orthogona lity conditions are :

J ~ j - x~ U 1~(x) U m(x ) dx = ~/2 , Iii
(4-6)

-1 = 0 , m~~ ii

The expansion in terms of ’ the (‘hebyshev polynomials is of tIle form

P~0 A C( l )  U0(x )  + AC(2 ) U 1 (x )  + A(’(3) U 2 ( x )  (4 -7)

where the A(”s are constants found by making use of the orthogonality conditions. For example , to
find AC( I ) .  mult iply (4 -7) through b y U 0 VT’- x2 and integrate over the region (-I , I ) .  Because of
the orth ogona lity conditions and tile t’act that the AC’s are constants , the result is’.

~~( x )  ~~l - x 2 U0( x )  dx A C ( I )  ~ /2 (4-8)

I here l’ore,

= -

~~

- f  P~.( x ) ‘~
‘
I - x  U0( x ) dx (4-9 )

Sim iIarI ~ ,

A(’( 2 )  = -# f  P~ (x )  \1I - x’ U 1 (x )  dx

(4-10)

= f  Pw (x )  ~~~~~ 2 U 111 ( x )  dx

I hi ving found as many  A( ”s as desired , the  expression for P~ in (4-7) is known completely. Since
the L ’ s iii t h i s  expression are all  ~oIy iion ii al s in x . one can collect like powers of’ x to get
P~. as .i power series in x. At’ter tra n sl ’orming thes e expressions so t l lat the  a l t i tude  A becomes

t he iinlepcndeii t  variable . one obtains the desired power series expressions for 
~~ ~n terms of ’ t h e

a l t i tud e A.
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‘I’he resulting coet’t’icicnts of ’ the different powers of ’ the geometric altitude , A , obtained from the
dif fe rent  expansions. are given in ‘I’ab (e XV I I I .  In each case , six terms were used in the expansion.
‘Fable XI X compares the pertormance for the three dit ’t’erent expansions. Note how much better
the series resulting l’rom the Legendre expansion is th an the other two series.

Table XVIII Coeffic ients Of The Different Powers Of A In The Expansion Of P
COEFFICIENTS C N FOR THE EXPRESSION f~ = :~ C~4~A

ALTITUDE 
— 

CO EF F I C I E N T S  FROM THE COEFFICI ENTS FROM THE COEFFICI ENTS FROM THE
REGION ~FT~ 

N CH EBYSH EV EXPAN SION L EG E N D R E  EX PA N SI 3N TAYLOR EXPAN SION

o 7 .68739394 1 X io 2 7.647500017 X io’ 2 7 ,647500000 X 10—2
1 2 .407 296101 X io ”G —2 . 237784147 X 10’~ —2 .23778 2949 X 10—6

A FROM 2 4.8 159 19194 X 10~~ 2,515493058 X 10—11 5.030975273 X 10—11
ZERO TO 3 1.47487 5550 X 10 — 15 —1 . 319129466 X 10—16 —9 .157272234 X iO’ 18
36 ,151.797 

~ 3.544103811 X lO”~ 2.986533408 X 10— 22 5.034864967 X 10—20
5 —3 .38 29 2038 2 X 10 “~~~ — 1.6065784 % X iO’~’28 —5.983560285 X

0 2.358894826 X 10’ ’ 1.242282588 X 10 —1 ‘2.271887183 X
A FROM 1 — 1.64939149 1 X i~

—
~ —5 . 593402375 X 10 —6 — 1.088 17 1034 X lO ”b

36 ,151. 79 7 2 5.3759 30550 X IC’-10 1.156099115 X 10 —10 5.222455 116 X lO~~
TO 3 —9.4486232 6 1 X i~— 15 — 1.349502 937 X 10 ‘~5 —2 .511405471 X
65 ,823.89 7 4 8 .57870897 9 X 10—20 8 ,702 175740 X 10 —21 1.210099127 X lC 19

5 — 3 .153 672 168 X 10—25 —2 . 42392338 9 X 10 —26 ‘—5 8423 08 620 X io—2 4

~ 2.660965 125 X 10—I 1.169028307 X 10—I
A FROM 1 — 1.3601 22778 X i~

—
~ —4. 105422820 X 10—6

65 ,823 ,89 7 2 2.9 2808 1740 X 10 — 10 8,125 386 209 X 10—li
TO 3 —3 .24422 7 337 X 10— 15 — 7 . 4098 12969 X 10— 16 NO ATA

100 ,000 4 1.827244849 X ~ — 20 3.523424824 X 10 —21
5 — 4 .153857 778 X 10 —26 —6 .9 192 78720 X 10 — 27

IN THIS REGfON TH E TAYLOR EXPAN SION IS ABOUT A = 36 .151. 797 INSTEAD OF A= 0 AS IN OTHER CASES

Table XIX Comparing Values of Calculated by the Different Expansions to
These Calculated by the Adopted Standard

THE SMALLEST NUMBER OF DIGITS IN AGREEMENT

ALTITUDE TO VITHIN ONE HALF IN THE LAST DIGIT

R EGION CHE BYSH EV LEG ENDRE TAYLOR
FT 1 EXPANSION EXPAN SION EXPANSION

ZERO TO
3 9 0

36 ,151. 791

36 .151.797
TO 3 6 0

65 ,823,897

65 , 823 , 897
TO 3 5 NO DATA

100.000

54 11
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4.2.2 1)crivation of Power Series from Legendre Expansion

The series derived from the Legendre expansion was adopted since it produ ced by far the most
accurate representation of the atmospheric density. A detailed description of the derivation of this
series was not given in the previous section and is given here with the 1965 modifications to the
standard atmosphere. Section 4.2.2. 1 includes the 1962 U.S . standard atmospheric density with
1965 modifications. Transformations necessary to make air density expressions compatible with the
Legendre po lvnomia i are given in Section 4 .2 .2 ,2. The Legendre expansion is described in Sec-
tion 4. 2 .2.3 . and the results are given in Section 4.2. 2 .4.

4.2 .2 . 1 Expressions t’or Atmospheric Density. l’he expressions for the atmospheric density
( in Ih / f t 3). including the 1965 modifications , are given below . First , let .

geopotentia l alt i tude (ft )
( 4 - I l )

A = geometric altit tide (t ’t )

where the relationship between A and Il  is .

11 = 
A(20 ,855 ,53l) (4 1~~)g A + 20 ,855 ,531 - -

First Region. 0 
~ 

11g < 3o ,08°)

— ‘ 
22.03644887 11 ~6.S755856X10~~)(lI~)l S~~

SS876l
— l288. IS ~~.OOl98I ) ( l I g ) l  (4- 13)

Second Region , 36,089 
~ 

< 65 .61 7

= (0 .227 190667) e ~4 .80634274XI0 5(H g~36.089) (4-14)

‘l ’hir d Region . 65,61 7 
~ 

Hg ~ I 04 .987

= 
( 1.19069435 6) ~1 ~~I .4O 68774 5X I0 6)( l 1g 65,ô l 7 ) l 34~I631~~S 

4 1 S)[2 16.65 +(O.0003O48)(II g 4i5,618) 1 -
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4 .2.2.2 Transformation of Variables. The input to the weapon control system , in practice , will be
the altitude A, not Hg . Therefore , the independent variable Hg in the expressions for the
atmospher ic density given above will he transforme d to A by the use of (4- 1 2). Also, in each
region t h e  expansion will be about the lower boundary limit of the region.

L
i’he Legendre polynomials used are orthogonal in the region -l ~ x ~ I , where x is the
indep endent variable f or  these functions. Therefore , it is necessa ry to make a linear transformation
of ’ variab les in the expressions for in each region so becomes a function of x . where,
-i < x ~~

. I .  At’ter the expansion in terms of the Legendre polynomials is completed , one can
transform hack to the variable A. ‘FIie appropriate transformation for each region is

x -A •
~~ 

EA~
A IIlifl 1 -1 (4-16)

max mm

wher e  
~‘n iax and A mii i n denote the upper and I wer boundary limits , respectively, of A in each

region.

4 .2.2. 3 Legendre Expansion.  l) if ’ferent numbers of ’ terms were tried t’or representing the atmo-
sphere in the fi rst region. It was decided to use five terms or a fourth-order representation. In the
next t~ o regions six terms or t’if ’th -order representations were used.

~\ c \ t ,  the obje ct us to expand P
~

( x )  . -l � “. ‘~ I . in terms ol’ the Legendre polyn omials which
a re given below ,

P0( x )

x

3 ’  1P~(x ) -~- x’- -

5 3  31 3( x )  — x - —~-x (4-17)

35~~~ 1 5 ’  3I 4( x )  __ 7g X - +

) 6 3 S  35~~~ I S ‘

1 5(x ) -~— x  - -
~

-x + -~~x

E tc.

El
-‘-- .---- ---

~

-- ~~ --‘.‘ _--. -- - .‘-- .~~~~~--_ ,‘, -_ -— — -— _—-—— ----—-—



Dl62- l0026-l

The ort hogonality conditions are :

(P ~ (x ) 
~m (x) dx = 0 , m

J (4-18)
-I 2

= 2 m + I  m n

The expansion in terms ot’ the Legendre functions is of the form:

= D C (I )  P0 ( x )  + l)C(2) P 1 (x )  + 1)C(3) I’2 (x )+ . . , (4-19)

where tile l)(” s are constants that  are found by n laking use ot’ tile orth ogona h ity conditions. For
example. to find l)(’( I ) , mult iple  ( 4 —1 9 )  through by P0(x ) and integrate over the region (— 1 , 1 ) . The
result is:

JP~~
(x) P0 (x) dx = 2DC ( 1) (4-20)

There f ’ore .

l)(’( I )  = 

~ I’ 
~~ Lx ) P0 (x )  dx (4 -2 1)

Similarly.

l)C(2) = / ~w (x)  P~ (x )  dx

(4-22)

l) C(n + 1) = 
_ J l + I J ~w (x)  P

11 
(x)  dx

57 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1) 1 62-10026- I

As mentioned bet’ore , five terms are used in the expansion for the first region. and six in the other
t% ~() regions. The coefficients , 1)(’( I ) through DC(S) or DU(6) , are f’ound by using (4-22) . Next ,
th e object is to expand 

~w in powers of ’ (A -A
111111

) . This is done in two steps. First , the result of
substi tuting (4- 17) in (4-19) and collecting like powers of ’ X is:

= I D(i I )  - 1/2 1)(’(3) + ‘~~‘ DC(5)J + x [l)( ’(2 - 4 D(’(4) + ~~ DC(o)J

+ x 2 l~ DC(3) - ~~~~ D(’( 5 ) J  - DC(4) - ~~~I)(’(ô ) J  ( 4-23)

+ x~ 
~~~~~~ 

D(’(S) I + x 5 I~~~D(’(6)I

or.

= E(’( I )  + FC(2 ) x +F(’(3) x 2 + EC(4) x 3 + E U ( S) ~4 + EC(6) \ 5 
, (4-24 )

respect i~ eI~ . l ime la st term in tile above expr essioml does not exis t  in tIle eXpr essioil l’or the
f i r st  region.

N e x t ,  it u ’~ desi rable to get Ps,,, as a fu nc t i on  of (A — A 111~11
) . where A 1~~11 is the lower l imi t  in each

region. l h e  re la t ions l l ip  bet~ ecu s and ( A — A ,11~11
) is

x = S (A - A
111~11

) -l (4 -25 )

~ here S = 2/( A flla x — A 111111
) . (See (4 —16 ) . )  ‘[he result ot’ subst i tut ing (4 -2 5) into (4 -24 ) and collect—

ing like I)o~ver s of (A — A~ 11~~) is .

= I LC ( 1)  — L(’( 2 )  + EC(3) - EC(4) + EU (S) - EC(6)I

+ (A — A 111~11
) ( 1 1 ( 1 1 ) —  2 E C ( 3)  + 3FC(4) — 4EC ( 5)+ 5EC (6)J S

+ I A  - A~1~~
) I F(’(3 )  - 3U’( 4) + 6E(’(~~) - IOE (’ ( 6 ) I  8

( 4-26)
+ .

~~ 
- ‘~ 1lliu1

’I ( 1’.( ’(4 )  — 4FC( 5 + I0l ~:C(6)I s3

+ (A - A . )4 I EC ( 5) - 5l~( ’(6) l S4
111111

+ ( A  - A 111i11 5 I E(’(( ’)I S5 I i
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or

LC( I ) + LC(2) ( A A min ) + LC(3) (A~~A min ) 2 + LC(4)(A A n1in )3

+ LC(5) (A - A 1.~1~11
)4 + LC(6) (A - A

1111~)5 (4-27)

respectively. Note that (4-26) and (4-27) represent the six-terni eXpansion. To obtain the five-term
expansion simp ly set EC(b) and ,  consequently, LC(b) to zero.

The LU’s are the desired coefficients. A computer program has been wri t ten to calculate these
LU’s.

4.2.2.4 Results. The coeff ’icients of ’ (A - A 11~11
) for the calculation of the atmospheric density

and atmospheric density ratio are gives a Table XX. ‘l’ahle XXI describes the accuracy of the power
series representation of til e atmospheric density expressions. ‘[his accuracy is described by giving
tile smallest number of digits in agreement between tI le develop ed power series and the expressions
a p pros ima ted.

When using the (‘DC 6600 computer , t i l ls series can be evaluated approximatel y 25 t imes faster than
the original expressions. As seen iii Table XXI. the agreement between this  series and the expressions
be in g app rox i mated i s at least seven dig it s f ’or a l t i tudes  below 37 .000 feet and five digits for a lti-
tudes below 100 ,000 t’ee t .

Table XX Coefficients of (4 — A m m )  in the Expressions For Atmospheric Density and Density Ratio

ALTITUDE COEFFICIENTS OF (A — A mini N COEFFICIENT OF (A — A m m )  N
REGION N FOR ATMOSPHERIC DENSITY FOR ATMO SPH ERIC DENSITY
(FT~ ________ 

(LB ‘CU FT~ RATIO

o 7 .6475577 X io 2 9.9999949 X
0 TO 1 —2.2 377695 X io— 6 —2 .92612 16 X

2 2.5 148808 X ~~~ 3.2884740 X
36 ,15 1.558 3 — 1.3 144741 X io~~

6 —1.7 188146 X iC”15
4 2.84 13555 X i0 22 3.715 3745 X io 21

0 2.271 89 15 X ir 2 2.9707396 X 10— 1
36 , 151.558 1 —1 .0879609 X ir6 14 226246 X

TO 2 2.6036523 X lO’~~’ 3.4045 523 X
3 —4.0790415 X 10~~ —5 .333 1805 X

65 .824 .100 4 4 .3207373 X 10” 21 5.6498234 X 10’~~5 —2 .4229 199 X i~”26 —3. 1695330 X

0 5.495678 1 X i~
—
~ 7.1861834 X

65 ,824. 100 1 —2.6989696 X i0~~ —3.5291898 X 1o~~
2 6.7688823 X 10’ 12 8.85 10333 X 10— 11

TO 3 —1 . 10995 12 X iü’—16 — 1.45 13792 X i~— 15

105.5 18.180 4 1. 116 1356 X i0-’21 1.5379224 X i0’~
5 —6.0891352 X io—27 —7,962 1917 X

NOTE: THE SYMBOL A DENOTES GEOMETRIC ALTITUDE AND A min D ENOTES THE LOW ER ALTITUD E LIM I T
FOR EACH REGION.
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Table XX I Comparison of the Power Series to the Expressions They Represent

ALTITUDE OR D ER OF
REGION (FT) COMPARISO N SERIES

FIRST OTO
REGION 36, 151.6

SECOND 36 ,151.6
REGION TO 65 ,824.1

65 ,824.1
T H I R D  

TO 100,000

REGION
100,000

TO 105 ,518.2

*NOTE THIS COLUMN G IVES THE ~ ALLEST NUMBER OF DIGITS IN AG RE EMENT TO ViIT HIN ONE
HALF IN ThE LAST DIGIT
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5.0 WNCLUSIONS

‘I’he technique described in this document for calculating weapon impact poin ts applies to any
unpowered , unguided projectile. It also applies to some powered and/or guided projectiles which
have a substantial ballistic trajectory segment. The reason for this wide applicability is that  an
accurate representa tion of tile differential  equations of m otion is integrated directly. The efl’iciency
of the new algor it iln l combined with tile higll speed of the new computers P ermits both accti racy
and f lexibi l i t y  in airborn e t’ire con trol calculation.

It has been established that  the algorithm can predi ct tile trajectories of ’ many types of projecti les.
The  primary application , of course , is in airborne f ’ire control systems. It can be used in weapon
release calculations f’or niost air-to-ground weapons and SOlllC air-to-air weapons. l’he algorithm
could also be used ill direction ot ground—to—ground or gro und—to—air guns , unguided rockets , or
guidance calculations f ’or guided weapons which operate in a semi—b allist ic mode.

‘[here are sotunel technical reasons to believe tha t  results equal to those shown in this document can
he produced tinder sin i i l ar conditions I’or any weapon wi th  similar characteristics,

(ii
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